首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89918篇
  免费   1471篇
  国内免费   633篇
电工技术   1185篇
技术理论   1篇
综合类   2554篇
化学工业   12506篇
金属工艺   5036篇
机械仪表   3362篇
建筑科学   2435篇
矿业工程   656篇
能源动力   1299篇
轻工业   3937篇
水利工程   1389篇
石油天然气   588篇
武器工业   58篇
无线电   10286篇
一般工业技术   17119篇
冶金工业   3116篇
原子能技术   323篇
自动化技术   26172篇
  2023年   66篇
  2022年   154篇
  2021年   240篇
  2020年   176篇
  2019年   135篇
  2018年   14588篇
  2017年   13515篇
  2016年   10114篇
  2015年   814篇
  2014年   555篇
  2013年   667篇
  2012年   3600篇
  2011年   9819篇
  2010年   8665篇
  2009年   5884篇
  2008年   7109篇
  2007年   8104篇
  2006年   447篇
  2005年   1438篇
  2004年   1315篇
  2003年   1358篇
  2002年   685篇
  2001年   220篇
  2000年   301篇
  1999年   205篇
  1998年   260篇
  1997年   174篇
  1996年   152篇
  1995年   91篇
  1994年   98篇
  1993年   85篇
  1992年   75篇
  1991年   60篇
  1990年   42篇
  1989年   41篇
  1988年   31篇
  1969年   24篇
  1968年   43篇
  1967年   33篇
  1966年   44篇
  1965年   44篇
  1963年   28篇
  1962年   22篇
  1960年   31篇
  1959年   38篇
  1958年   37篇
  1957年   37篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Ma  Yonghong  Yang  Xiaomeng  Qu  Sen  Kong  Lingkai 《Scientometrics》2022,127(3):1273-1294
Scientometrics - The purpose of the present paper is to investigate the formation mechanism of big data technology cooperation networks by considering the combined effect of three key factors,...  相似文献   
2.
For proton-exchange membrane fuel cells, the distribution of reactant flow in the stack is critical to the fuel cell's efficiency. The uneven distribution of reactant flow in the stack may cause poor current density, low performance, and material degradation. To understand and accurately predict the flow field in the proton-exchange membrane fuel cell system, the present study aims to develop a simple correlation to analyze the pressure drop in fuel cell stacks. The flow channel in each cell of a stack is treated as a porous medium, and a power-law model is used to approximate the porous medium momentum source term. For the stacks with fewer cell numbers, namely, 1, 5, and 10 cells, the parameters in the power law are established based on the experimental data. Then, a correlation is developed to simulate the flow and predict the pressure drop in the stack with higher cell numbers (ie, 20 and 40 cells). The simulations show that the pressure drop in each cell of a stack is almost invariable, and the average pressure drop decreases with increasing the number of cells. The flow uniformity in the stacks with different cell numbers is evaluated using the dimensionless pressure drop and the pressure drop ratios. It suggests that the lower the cell number, the more uniform the pressure drop. The developed model is conducive to efficiently designing the flow channel for a fuel cell stack with large cell numbers.  相似文献   
3.
High-efficiency Yb:Y2O3 laser ceramics were fabricated using the vacuum-sintering plus hot isostatic pressing (HIP) without sintering additives. High-purity well-dispersed nanocrystalline Yb:Y2O3 powder was synthesized using a modified co-precipitation method in-house. The green bodies were first vacuum sintered at a temperature as low as 1430°C and then HIPed at 1450°C. Finally, the samples were air annealed at 800°C for 10 h. Although no sintering aids were used, full density of the samples with excellent optical homogeneity and an inline transmission of 80% at 400 nm could be obtained. Moreover, photodarkening phenomenon was not detected in the ceramics. Preliminary laser experiment with the fabricated ceramics in a two-mirror cavity has demonstrated 32 W continuous-wave (CW) output at ∼1077 nm with an optical-to-optical conversion efficiency of 58.2%. To the best of our knowledge, this is so far the highest CW output power and optical-to-optical conversion efficiency achieved with the Yb3+-doped sesquioxide ceramics in a simple two-mirror cavity.  相似文献   
4.
5.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
6.
Kuo  Shu-Chun  Chien  Tsair-Wei  Chou  Willy 《Scientometrics》2022,127(2):1191-1194
Scientometrics - The article published on 5 July 2021 is well-written and of interest. However, some improvements could be made, such as ten Tables/Figures can be shortened to highlight the focused...  相似文献   
7.
8.
In this study, we aimed at fabricating decellularized bovine myocardial extracellular matrix-based films (dMEbF) for cardiac tissue engineering (CTE). The decellularization process was carried out utilizing four consecutive stages including hypotonic treatment, detergent treatment, enzymatic digestion and decontamination, respectively. In order to fabricate the dMEbF, dBM were digested with pepsin and gelation process was conducted. dMEbF were then crosslinked with N-hydroxysuccinimide/1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (NHS/EDC) to increase their durability. Nuclear contents of native BM and decellularized BM (dBM) tissues were determined with DNA content analysis and agarose-gel electrophoresis. Cell viability on dMEbF for 3rd, 7th, and 14th days was assessed by MTT assay. Cell attachment on dMEbF was also studied by scanning electron microscopy. Trans-differentiation capacity of human adipose-derived mesenchymal stem cells (hAMSCs) into cardiomyocyte-like cells on dMEbF were also evaluated by histochemical and immunohistochemical analyses. DNA contents for native and dBM were, respectively, found as 886.11?±?164.85 and 47.66?±?0.09?ng/mg dry weight, indicating a successful decellularization process. The results of glycosaminoglycan and hydroxyproline assay, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), performed in order to characterize the extracellular matrix (ECM) composition of native and dBM tissue, showed that the BM matrix was not damaged during the proposed method. Lastly, regarding the histological study, dMEbF not only mimics native ECM, but also induces the stem cells into cardiomyocyte-like cells phenotype which brings it the potential of use in CTE.  相似文献   
9.
10.
In this study, three different configurations of a solid oxide fuel cell and gas microturbine hybrid system are evaluated for application in auxiliary power units. The first configuration is a common hybrid system in auxiliary power units, utilizing a fuel cell stack in the structure of the gas turbine cycle. The other configurations use two series and parallel fuel cell stacks in the structure of the gas turbine cycle. The main purpose of this research is thermodynamic analysis, evaluation of the performance of the proposed hybrid systems in similar conditions, and selection of an appropriate system in terms of efficiency, power generation, and entropy generation rate. In this study, the utilized fuel cells were subjected to electrochemical, thermodynamic, and thermal analyses and their working temperatures were calculated under various working conditions. Results indicate that the hybrid system with two series stacks had maximum power generation and efficiency compared with the other two cases. Moreover, the simple hybrid system and the system with two parallel stacks had relatively equal pure power generation and efficiency. According to the investigations, hybrid system with two series fuel cell stacks, which had 3424 and 1712 cells, respectively, can achieve the electrical efficiency of over 48%. A hybrid system with two parallel fuel cell stacks, in which each stack had 2568 cells, had the electrical efficiency of 46.3%. Findings suggested that maximum electrical efficiency occurred between the pressure ratios of 5–6 in the proposed hybrid systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号