首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   0篇
无线电   4篇
一般工业技术   2篇
自动化技术   72篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   6篇
  2015年   1篇
  2014年   5篇
  2013年   10篇
  2012年   3篇
  2011年   3篇
  2010年   7篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
Task scheduling is essential for the proper functioning of parallel processor systems. Scheduling of tasks onto networks of parallel processors is an interesting problem that is well-defined and documented in the literature. However, most of the available techniques are based on heuristics that solve certain instances of the scheduling problem very efficiently and in reasonable amounts of time. This paper investigates an alternative paradigm, based on genetic algorithms, to efficiently solve the scheduling problem without the need to apply any restricted assumptions that are problem-specific, such is the case when using heuristics. Genetic algorithms are powerful search techniques based on the principles of evolution and natural selection. The performance of the genetic approach will be compared to the well-known list scheduling heuristics. The conditions under which a genetic algorithm performs best will also be highlighted. This will be accompanied by a number of examples and case studies  相似文献   
2.
Energy-efficient computing has now become a key challenge not only for data-center operations, but also for many other energy-driven systems, with the focus on reducing of all energy-related costs, and operational expenses, as well as its corresponding and environmental impacts. However, current intelligent data models are typically performance driven. For instance, most data-driven machine-learning approaches are often known to require high computational cost in order to find the global optima. Designing more accurate intelligent data models to satisfy the market needs will hence lead to a higher likelihood of energy waste due to the increased computational cost. This paper thus introduces an energy-efficient framework for large-scale data modeling and classification/prediction. It can achieve a predictive accuracy comparable to or better than the state-of-the-art machine-learning models, while at the same time, maintaining a low computational cost when dealing with large-scale data. The effectiveness of the proposed approaches has been demonstrated by our experiments with two large-scale KDD data sets: Mtv-1 and Mtv-2.  相似文献   
3.
An efficient resource allocation is a fundamental requirement in high performance computing (HPC) systems. Many projects are dedicated to large-scale distributed computing systems that have designed and developed resource allocation mechanisms with a variety of architectures and services. In our study, through analysis, a comprehensive survey for describing resource allocation in various HPCs is reported. The aim of the work is to aggregate under a joint framework, the existing solutions for HPC to provide a thorough analysis and characteristics of the resource management and allocation strategies. Resource allocation mechanisms and strategies play a vital role towards the performance improvement of all the HPCs classifications. Therefore, a comprehensive discussion of widely used resource allocation strategies deployed in HPC environment is required, which is one of the motivations of this survey. Moreover, we have classified the HPC systems into three broad categories, namely: (a) cluster, (b) grid, and (c) cloud systems and define the characteristics of each class by extracting sets of common attributes. All of the aforementioned systems are cataloged into pure software and hybrid/hardware solutions. The system classification is used to identify approaches followed by the implementation of existing resource allocation strategies that are widely presented in the literature.  相似文献   
4.
Optimal performance of robot manipulators can be achieved only by utilizing advanced control algorithms. However, precise control of robot motion requires the use of accurate dynamic models, which are very complicated due to varying arm geometric configuration, uncertain effects of load handling on the dynamic stability of the arm, and the high degree of nonlinearty and coupling exhibited between different links. Therefore, an efficient and fast method for on-line tuning of robot dynamic parameters must be devised. In this work a simplified model based on Lagrange-Euler dynamics is developed. The proposed method is simple and systematic for the extraction and identification of robot dynamic parameters. The dynamic parameters are then formulated as a regression model. This model is used to generate the closed-form solution of the dynamics. The analysis in this work is based on a set of compiled data for the Stanford arm to facilitate the study of the dynamic performance and closed-loop solutions of robot manipulators. For the derivation of the dynamics MAPLE (symbolic computer algebra language) is used.  相似文献   
5.
In this paper, we consider the problem of searching a network for intruders. We propose a strategy for capturing the intruder in the popular interconnection topology, the star network. According to the proposed strategy, a team of collaborative software agents are responsible for capturing a hostile intruder (e.g. a virus). These agents asynchronously move along the network links and the intruder has the capability of escaping arbitrarily fast.  相似文献   
6.
7.
The paper presents cellular automata (CA)-based multiprocessor scheduling system, in which an extraction of knowledge about scheduling process occurs and this knowledge is used while solving new instances of the scheduling problem. There are three modes of the scheduler: learning, normal operating, and reusing. In the learning mode, a genetic algorithm is used to discover CA rules suitable for solving instances of a scheduling problem. In the normal operating mode, discovered rules are able to find automatically, without a calculation of a cost function, an optimal or suboptimal solution of the scheduling problem for any initial allocation of program tasks in a multiprocessor system. In the third mode, previously discovered rules are reused with support of an artificial immune system (AIS) to solve new instances of the problem. We present a number of experimental results showing the performance of the CA-based scheduler.  相似文献   
8.
We present an approach to designing cellular automata-based multiprocessor scheduling algorithms in which extracting knowledge about the scheduling process occurs. We consider the simplest case when a multiprocessor system is limited to two-processors. To design cellular automata corresponding to a given program graph, we propose a generic definition of program graph neighborhood, transparent to the various kinds, sizes, and shapes of program graphs. The cellular automata-based scheduler works in two modes: learning mode and operation mode. Discovered rules are typically suitable for sequential cellular automata working as a scheduler, while the most interesting and promising feature of cellular automata are their massive parallelism. To overcome difficulties in evolving parallel cellular automata rules, we propose using coevolutionary genetic algorithm. Discovered this way, rules enable us to design effective parallel schedulers. We present a number of experimental results for both sequential and parallel scheduling algorithms discovered in the context of a cellular automata-based scheduling system  相似文献   
9.
This paper presents ESSR (Enhanced Simulated annealing for Single-row Routing) model for solving the single-row routing problem. The main objective in this problem is to produce a realization that minimizes both the street congestion and the number of doglegs. Simulated annealing (SA) is a stochastic, hill-climbing and gradient-descent technique based on the statistical properties of particles undergoing thermal annealing. By performing slow cooling, the nets in the single-row routing problem align themselves according to a configuration with the lowest energy. The model has been known to produce reasonably good solutions for many NP-complete optimization problems, such as the single-row routing problem. In ESSR, our strategy is to minimize both the street congestion and the number of interstreet crossings (doglegs) by expressing a single energy function as their collective properties. This objective is achieved by representing the energy as the absolute sum of the heights of the net segments. To speed up convergence, we pivot the street congestion value while having the energy drops directly proportional to the number of doglegs. This action has the effect of minimizing the number of doglegs as the energy stabilizes. Our simulation work on ESSR produces optimal results in most cases for both the street congestion and the number of doglegs. Our experimental results compare well against results obtained from our earlier model (SRR-7) and two other methods reported in the literature.  相似文献   
10.
In wireless sensor networks, the sensor nodes find the route towards the sink to transmit data. Data transmission happens either directly to the sink node or through the intermediate nodes. As the sensor node has limited energy, it is very important to develop efficient routing technique to prolong network life time. In this paper we proposed rendezvous-based routing protocol, which creates a rendezvous region in the middle of the network and constructs a tree within that region. There are two different modes of data transmission in the proposed protocol. In Method 1, the tree is directed towards the sink and the source node transmits the data to the sink via this tree, whereas in Method 2, the sink transmits its location to the tree, and the source node gets the sink’s location from the tree and transmits the data directly to the sink. The proposed protocol is validated through experiment and compared with the existing protocols using some metrics such as packet delivery ratio, energy consumption, end-to-end latency, network life time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号