首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8433篇
  免费   645篇
  国内免费   95篇
电工技术   3篇
综合类   411篇
化学工业   1849篇
金属工艺   32篇
机械仪表   32篇
建筑科学   33篇
矿业工程   58篇
能源动力   39篇
轻工业   6103篇
水利工程   4篇
石油天然气   127篇
无线电   16篇
一般工业技术   436篇
冶金工业   20篇
原子能技术   4篇
自动化技术   6篇
  2024年   48篇
  2023年   150篇
  2022年   229篇
  2021年   275篇
  2020年   238篇
  2019年   244篇
  2018年   196篇
  2017年   320篇
  2016年   241篇
  2015年   284篇
  2014年   353篇
  2013年   407篇
  2012年   637篇
  2011年   675篇
  2010年   443篇
  2009年   441篇
  2008年   401篇
  2007年   573篇
  2006年   554篇
  2005年   425篇
  2004年   327篇
  2003年   312篇
  2002年   251篇
  2001年   236篇
  2000年   168篇
  1999年   135篇
  1998年   110篇
  1997年   86篇
  1996年   69篇
  1995年   59篇
  1994年   60篇
  1993年   56篇
  1992年   45篇
  1991年   30篇
  1990年   16篇
  1989年   18篇
  1988年   10篇
  1987年   10篇
  1986年   7篇
  1985年   10篇
  1984年   5篇
  1982年   2篇
  1981年   1篇
  1980年   6篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
排序方式: 共有9173条查询结果,搜索用时 15 毫秒
1.
2.
In this work, corn extruded snack products were enriched with rice bran (RB) at 10% and 15%. A co-rotating twin-screw extruder was used with a feed moisture content of 16 g 100 g−1, a screw speed of 240 r.p.m. and four heating sections of the barrel (100, 140, 150 and 150 °C). The impact of RB inclusion on nutritional profile, starch digestion, physicochemical and textural properties of snack products was evaluated. RB-enriched extrudates showed a lower specific volume and hardness and higher crispness than control. RB at 15% gave a water-holding capacity lower than control. Rheology of extrudate dispersions indicated an increase in elastic interactions and solid-like behaviour with RB supplementation. Differences in rheological properties resulted in attenuation of predictive glycaemic response for RB-enriched snacks.  相似文献   
3.
Pinhão seed is an unconventional source of starch and the pines grow up in native forests of southern Latin America. In this study, pinhão starch was adjusted at 15, 20 and 25% moisture content and heated to 100, 110 and 120 °C for 1 h. A decrease in λ max (starch/iodine complex) was observed as a result of increase in temperature and moisture content of HMT. The ratio of crystalline to amorphous phase in pinhão starch was determined via Fourier transform infra red by taking 1045/1022 band ratio. A decrease in crystallinity occurred as a result of HMT. Polarised light microscopy indicated a loss of birefringence of starch granules under 120 °C at 25% moisture content. Granule size distribution was further confirmed via scanning electron microscopy which showed the HMT effects. These results increased the understanding on molecular and structural properties of HMT pinhão starch and broadened its food and nonfood industrial applications.  相似文献   
4.
A series of hyperbranched poly(citric polyethylene glycol) (PCPEG) materials with varied polyethylene glycol (PEG) chain lengths as plasticizers were mixed with maize starch (MS) via cooking and film‐forming. The structure, pasting property, plasticization, aging property, moisture absorption and compatibility of plasticized starches were studied by means of Fourier transform infrared spectroscopy, X‐ray diffraction, rapid viscosity analysis, tension testing, moisture absorption measurements and scanning electron microscopy. Compared with PEG and citric acid, PCPEG was more effective in promoting starch chain movement and inhibiting the retrogradation of starch film. Also, PCPEG/MS had smaller moisture content. The longer the plasticizer chain, the better were the aging resistance and moisture resistance of starch. But with an increase of PEG chain length, mechanical properties of PCPEG/MS deteriorated and the compatibility between PCPEG and MS decreased. The hyperbranched derivative of PEG with longer chain exhibited improved plasticization and compatibility with starch. © 2019 Society of Chemical Industry  相似文献   
5.
The objective of this study was to characterise the nutritional potential of leaves and identify a diversity centre with low cyanide and high nutrient content among 178 Latin American cassava genotypes. This field-based collection represents the seven diversity centres, held at The International Center for Tropical Agriculture (CIAT Palmira, Colombia) by the Cassava Program. The cyanide, all-trans-β-carotene and lutein concentrations in cassava leaves ranged from 346 to 7484 ppm dry basis (db), from 174–547 μg g−1 db and 15–181 μg g−1 db, respectively. Cassava leaves also showed significant levels of essential amino acids leucine, lysine, phenylalanine, valine and threonine, and average total protein content of 26.24 g 100 g−1 db. Among seven diversity centres, South American rainforest group showed low cyanide and high carotene content in leaves. In addition, VEN77 and PAN51 genotypes stood out for having low cyanide in leaves and roots and high carotene in leaves. This genetic diversity can be used to select high potential progenitors for breeding purposes.  相似文献   
6.
Waxy, normal and high-amylose maize starches were subjected to heat-moisture treatment (HMT) and then added to wheat flour (WF) in different ratios (1%, 5% and 10%). The properties of blends and their cooked noodles were studied to investigate the effects of HMT starches. The incorporation of HMT starch in WF led to an increase in swelling power, peak viscosity and breakdown and to a decrease in setback, thus inhibiting retrogradation, hence enhancing resultant noodle softness. Compared to the same addition ratio of native starch to WF, HMT starch led to higher tensile strength and extensibility in resultant noodles. WF with added HMT starch had higher resistant starch than with native starch. This study showed that addition of HMT maize starch has potential to bring nutritional benefits. However, it is necessary to select the proper blending ratio and amylose content of starch to add, in consideration of its effect on noodle quality.  相似文献   
7.
The objective of this study was to determine the effect of complexation of oxidised starch with mineral elements on its physicochemical properties. Corn starch was oxidised with sodium hypochlorite and, afterwards, modified with ions of potassium, magnesium and iron. Thus, native and modified starches were analysed for: contents of mineral elements, colour parameters (L*a*b*), water binding capacity and solubility in water at temperature of 60 and 80 °C. Thermodynamic characteristics of gelatinisation by DSC, molecular weight distribution by GPC, intrinsic viscosity and pasting properties by RVA were studied. The efficiency of incorporation of metal ions into oxidised corn starch was about 30%, 20% and 20% for potassium, magnesium and iron ions, respectively. The complexation with potassium ions caused the greatest changes in the molecular weight distribution and the intrinsic viscosity of starches and viscosity of starch pastes. Only modification of starch with iron ions affected the colour parameters of the starch. Incorporation of metal ions into starch resulted also in changes in its water binding capacity and solubility in water.  相似文献   
8.
9.
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.  相似文献   
10.
Hydrogen is a clean energy carrier with great potential to be an alternative fuel. Anaerobic hydrogen fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste and wastewater enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be a source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate‐rich nitrogen‐deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen, is possibly the most efficient way to use these agroindustrial residues. This review summarizes the potential of starch agroindustrial residues as a substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio‐processing conditions for biohydrogen production will be discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号