首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29091篇
  免费   3607篇
  国内免费   1560篇
电工技术   2523篇
综合类   2118篇
化学工业   4556篇
金属工艺   649篇
机械仪表   2012篇
建筑科学   1364篇
矿业工程   331篇
能源动力   746篇
轻工业   1809篇
水利工程   166篇
石油天然气   1337篇
武器工业   252篇
无线电   7326篇
一般工业技术   5390篇
冶金工业   434篇
原子能技术   863篇
自动化技术   2382篇
  2024年   74篇
  2023年   505篇
  2022年   671篇
  2021年   1013篇
  2020年   1081篇
  2019年   1001篇
  2018年   900篇
  2017年   1166篇
  2016年   1267篇
  2015年   1260篇
  2014年   1893篇
  2013年   1921篇
  2012年   1963篇
  2011年   2174篇
  2010年   1615篇
  2009年   1737篇
  2008年   1534篇
  2007年   1644篇
  2006年   1529篇
  2005年   1305篇
  2004年   1154篇
  2003年   1062篇
  2002年   819篇
  2001年   700篇
  2000年   703篇
  1999年   546篇
  1998年   445篇
  1997年   409篇
  1996年   347篇
  1995年   294篇
  1994年   267篇
  1993年   237篇
  1992年   161篇
  1991年   160篇
  1990年   125篇
  1989年   101篇
  1988年   64篇
  1987年   40篇
  1986年   43篇
  1985年   71篇
  1984年   70篇
  1983年   49篇
  1982年   76篇
  1981年   8篇
  1980年   10篇
  1979年   8篇
  1976年   8篇
  1974年   6篇
  1959年   7篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Novel Ln-MOF with microrods shape were successfully combined with ZnIn2S4 (ZIS) microsphere and used for photocatalytic hydrogen generation under UV–Vis and visible light. The Ln-MOFs/ZIS system comprises lanthanide-carboxylate coordination networks (Tm and Gd as metal ions, and 1,3,5-benzenetricarboxylic acid (BTC) as the organic linker) deposited on ZnIn2S4 microspheres. Effect of the amount of ((Tm,Gd)-BTC) (1, 5, 10 wt%) on the optical properties and photocatalytic hydrogen evolution performance was investigated. ZIS microsphere shows the marigold flower-like morphology and hexagonal polytopic crystal form. Our results proved that the combination of ZIS microsphere, Ln-MOF and Pt nanoparticles (NPs) caused significant enhancement in hydrogen generation. Amount of formed hydrogen was raised from 196.3 to 7782.1 μmol g?1 for pristine ZIS and ZIS decorated with 1% (Tm, Gd)-BTC/Pt under UV–Vis light, respectively.  相似文献   
2.
The spongy nickel oxide (SNO) was synthesized the solution combustion method. The SNO was selected as a promoter to boost the catalytic activity of nanoraspberry-like palladium (NRPd) toward electrooxidation of five light fuels (LFs): methanol, ethanol, formaldehyde, formic acid, and ethylene glycol. The X-ray powder diffraction, Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy, and field emission scanning electron microscope techniques were used for the materials characterization. In comparison with nonpromoted Pd, the NRPd-SNO electrocatalyst shown an excellent efficiency in parameters like the electrochemical active surface area and anti-CO poisoning behavior. The turnover data and the parameters, including reaction order, activation energy, and the coefficients of electron transfer and diffusion, were evaluated for the each process of LFs electrooxidation. The outcome for NRPd-SNO activity toward LFs electrooxidation was compared to some reported electrodes. The SNO increases the removal of intermediates created in the oxidation of LFs that can poison the surface of palladium catalyst. This is due to the presence of the lattice oxygens in SNO structure and Ni switching between its high and low valances. The compatibility of the adsorption process of LFs on the surface of the NRPd-SNO catalyst with different isotherms was determined by studying the Tafel polarization and calculating the surface coverage.  相似文献   
3.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
4.
ABSTRACT

It is important to perform neutron transport simulations with accurate nuclear data in the neutronics design of a fusion reactor. However, absolute values of large-angle scattering cross sections vary among nuclear data libraries even for well-examined nuclide of iron. Benchmark experiments focusing on large-angle scattering cross sections were thus performed to confirm the correctness of nuclear data libraries. The series benchmark experiments were performed at a DT neutron source facility, OKTAVIAN of Osaka University, Japan, by the unique experimental system established by the authors’ group, which can extract only the contribution of large-angle scattering reactions. This system consists of two shadow bars, target plate (iron), and neutron detector (niobium). Two types of shadow bars were used and four irradiations were conducted for one experiment, so that contribution of room-return neutrons was effectively removed and only large-angle scattering neutrons were extracted from the measured four Nb reaction rates. The obtained experimental results were compared with calculations for five nuclear data libraries including JENDL-4.0, JEFF.-3.3, FENDL-3.1, ENDF/B- VII, and recently released ENDF/B-VIII. It was found from the comparison that ENDF/B-VIII showed the best result, though ENDF/B-VII showed overestimation and others are in large underestimation at 14 MeV.  相似文献   
5.
The present study reports for the first time the performance of silver phosphate (Ag3PO4) microcrystals as photocatalyst (degradation of Rodamine B-RhB) and antifungal agent (against Candida albicansC. albicans) under visible-light irradiation (455 nm). Ag3PO4 microcrystals were synthesized by a simple co-precipitation (CP) method at room temperature. The structural and electronic properties of the as-synthetized Ag3PO4 have been investigated before and after 4 cycles of RhB degradation under visible light using X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis spectrophotometer and field emission scanning electron microscopy (FE-SEM) images. The antifungal activity was analyzed in planktonic cells and 48h-biofilm of C. albicans by colony forming units (CFU) counting, confocal laser and FE-SE microscopies. Statistical analysis was carried out using SPSS software. Morphological and structural modifications of Ag3PO4 were observed upon recycling. After 4 recycles, the material maintained its photodegradation property; an eightfold increase in the efficiency of Ag3PO4 was observed in planktonic cells and a two fold increase in biofilm when irradiated under visible light. Thus, higher antifungal effectiveness against C. albicans was obtained when associated with visible-light irradiation.  相似文献   
6.
红外偏振光治疗仪是一种将红外技术与电子技术应用到医学领域的康复理疗设备,主要用于软组织损伤和慢性疼痛的康复治疗,已在医院得到了推广使用。然而,现有医院使用的台式治疗仪由于体积大、售价高等特点,不方便居家使用。为了开发体积小、售价低、家庭可用的红外偏振光治疗仪,满足家用市场的潜在需求,本文提出了一种新的便携手持式红外偏振光治疗仪,并开发了该智能控制系统。本文首先介绍了一种新的家用手持式治疗仪应具备的特点和关键技术指标,在此基础上设计了手持式治疗仪的硬件总体方案和软件架构,简要介绍了该治疗仪的一些关键技术,最终实现了治疗仪样机的研制。为了验证该样机的性能,本文通过大量的测试,结果表明,研制的手持式红外偏振光治疗仪在关键参数指标上达到了医院同类产品的水平,能够很好地满足家用的需求,具有良好的市场前景。  相似文献   
7.
《Advanced Powder Technology》2020,31(12):4585-4597
Focussing on visible light active ferrites for high performance removal of noxious pollutants, we report the synthesis of Mg0.5NixZn0.5-xFe2O4 (x = 0.1, 0.2, 0.3, 0.4, & 0.5) ferrite nanoparticle for degradation of reactive blue-19 (RB-19). Lattice parameters calculated using intense X-ray diffraction (XRD) peaks and Nelson-Riley plots (N-R plot) are in well agreement with each other. The sample Mg0.5Ni0.4Zn0.1Fe2O4 (M5N4) exhibits best performance with 99.5% RB-19 degradation in 90 min under visible light. Photoluminescence (PL) results confirm that recombination of charge carriers is highly reduced in the photocatalyst. Scavenging experiments suggest that O2 radicals were the dominant species responsible for photocatalytic performance. The photocatalytic mechanism was explained in terms of dopant driven shifting of conduction bands and valence bands (calculated by Mott-Schottky plots). The thermodynamic probability of radical generation along with role of redox cycles of metal ions has been discussed in the mechanism. The dye degradation was ascertained by detection of intermediates via mass spectrometry analysis and a possible degradation route was also predicted. The findings in this work provide intriguing opportunities to modify the electronic band structure of spinel ferrites for visible and solar light photocatalytic activity for environmental detoxification.  相似文献   
8.
Dy3+, Eu3+: NaLa(WO4)2 phosphors are successfully synthesized through the solid-state reaction technique. The phase-structure and morphology are measured via X-ray diffraction and energy dispersive spectrometry. The concentrations of Dy3+, Eu3+, La3+, and W6+ are measured via ICP. The absorption and excited spectra are presented, which indicate that a blue band ranging from 430 to 480 nm is suitable for excitation. Using a commercial blue LED with a wavelength of 450 nm as the excitation light source, emission spectra for samples with varying dopant concentration ratios of Dy3+ to Eu3+ are obtained, which show good tunable yellow and red emission. For the purpose of investigating white LED performance, CIE spectra and a white light photo are also presented. The results reveal that varying the dopant concentration ratio of Dy3+ to Eu3+ plays a key role in the warm-white performance. With increasing concentration of Eu3+, the correlated color temperature decreases from 4069 to 3172 K, which indicates good warm-white performance.  相似文献   
9.
The selenol group of selenocysteine is much more nucleophilic than the thiol group of cysteine. Selenocysteine residues in proteins thus offer reactive points for rapid post-translational modification. Herein, we show that selenoproteins can be expressed in high yield and purity by cell-free protein synthesis by global substitution of cysteine by selenocysteine. Complete alkylation of solvent-exposed selenocysteine residues was achieved in 10 minutes with 4-chloromethylene dipicolinic acid (4Cl-MDPA) under conditions that left cysteine residues unchanged even after overnight incubation. GdIII−GdIII distances measured by double electron–electron resonance (DEER) experiments of maltose binding protein (MBP) containing two selenocysteine residues tagged with 4Cl-MDPA-GdIII were indistinguishable from GdIII−GdIII distances measured of MBP containing cysteine reacted with 4Br-MDPA tags.  相似文献   
10.
The new layered niobate Cu0.5Nb3O8 is synthesized by soft chemistry in aqueous electrolyte via Cu2+→H+ exchange between copper nitrate and HNb3O8·H2O. The characterization of the exchanged product is made by means of thermal gravimetry, chemical analysis, X-ray diffraction and IR spectroscopy. Thermal analysis shows a conversion to anhydrous compound above 500 °C. The oxide displays a semiconductor like behavior; the thermal variation of the conductivity shows that d electrons are strongly localized and the conduction is thermally activated with activation energy of 0.13 eV. The temperature dependence of the thermopower is indicative of an extrinsic conductivity; the electrons are dominant carriers in conformity with an anodic photocurrent. Indeed, the Mott–Schottky plot confirms n-type conduction from which a flat band potential of −0.82 VSCE, an electronic density of 8.72×1019 m−3 and a depletion width of 4.4 nm are determined. The upper valence band, located at ~5.8 eV below vacuum is made up predominantly of Cu2+: 3d with a small admixture of O2−: 2p orbitals whereas the conduction band consists of empty Nb5+: 5s level. The energy band diagram shows the feasibility of the oxide for the photocatalytic hydrogen production upon visible light (29 mW cm−2) with a rate evolution of 0.31 mL g−1 min−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号