首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12142篇
  免费   1532篇
  国内免费   495篇
电工技术   62篇
综合类   581篇
化学工业   7746篇
金属工艺   678篇
机械仪表   108篇
建筑科学   102篇
矿业工程   173篇
能源动力   121篇
轻工业   1158篇
水利工程   9篇
石油天然气   815篇
武器工业   82篇
无线电   392篇
一般工业技术   1416篇
冶金工业   528篇
原子能技术   111篇
自动化技术   87篇
  2024年   30篇
  2023年   187篇
  2022年   253篇
  2021年   394篇
  2020年   392篇
  2019年   343篇
  2018年   348篇
  2017年   460篇
  2016年   487篇
  2015年   499篇
  2014年   610篇
  2013年   885篇
  2012年   847篇
  2011年   803篇
  2010年   556篇
  2009年   629篇
  2008年   507篇
  2007年   720篇
  2006年   758篇
  2005年   520篇
  2004年   566篇
  2003年   504篇
  2002年   429篇
  2001年   427篇
  2000年   340篇
  1999年   256篇
  1998年   246篇
  1997年   200篇
  1996年   143篇
  1995年   156篇
  1994年   114篇
  1993年   84篇
  1992年   101篇
  1991年   91篇
  1990年   60篇
  1989年   40篇
  1988年   23篇
  1987年   20篇
  1986年   11篇
  1985年   40篇
  1984年   29篇
  1983年   27篇
  1982年   22篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
3.
Poly(l ‐lactic acid) (PLLA) is a biodegradable and biocompatible thermoplastic polyester produced from renewable sources, widely used for biomedical devices, in food packaging and in agriculture. It is a semicrystalline polymer, and as such its properties are strongly affected by the developed semicrystalline morphology. As a function of the crystallization temperature, PLLA can form different crystal modifications, namely α′‐crystals below about 120 °C and α‐crystals at higher temperatures. The α′ modification is therefore of special importance as it may be the preferred polymorph developing at processing‐relevant conditions. It is a metastable modification which typically transforms into the more stable α‐crystals on annealing at elevated temperature. The structure, kinetics of formation and thermodynamics of α′‐ and α‐crystals of PLLA are reviewed in this contribution, together with the effect of α′‐/α‐crystal polymorphism on the properties of PLLA. © 2018 Society of Chemical Industry  相似文献   
4.
介绍了高分子材料导热性能影响因素研究进展,重点阐释了聚合物基体的结构特性(链结构、分子间相互作用、取向、结晶度等)、导热填料(种类、含量、形态、尺寸等)以及制备方法等对高分子材料导热性能的影响。  相似文献   
5.
Crosslinking of polyolefin elastomer (POE, ENGAGE™ 8480) with Dicumyl Peroxide (DCP) can have effects on its crystallization dynamics, crystal structure, and properties. The POE crosslinked uniformly has significantly lower crystalline ability than the one with only amorphous phase crosslinked, which, in turn, has weaker crystalline ability than neat POE. The crystallinity and melting point depend on how the POE is crosslinked. The neat POE and POE crosslinked in amorphous phase only, are investigated with DSC and in-situ tensile/synchrotron radiation (WAXD/SAXS). In situ tensile/synchrotron X-ray during a uniaxial stretching process indicates that severe crystal fragmentation is observed at a strain around 45%, and with further increase in strain. The stress in the crosslinked POE is significantly larger than neat POE. For both samples, crystal orientation increases sharply within the strain range up to 88% where orientation-induced new crystals aligned in stretching direction are observed. The long period increases more in stretching direction for the crosslinked POE, consistent with larger stress in this sample, and the stress difference is more pronounced at large strains (27.3 vs. 10.9 MPa at a strain 435%). Permanent set of the crosslinked POE is smaller, consistent with less oriented crystals observed after the test for permanent set.  相似文献   
6.
Material encapsulation is a relatively new technique for coating a micro/nanosize particle or droplet with polymeric or inorganic shell. Encapsulation technology has many applications in various fields including drug delivery, cosmetic, agriculture, thermal energy storage, textile, and self-healing polymers. Poly(methyl methacrylate) (PMMA) is widely used as shell material in encapsulation due to its high chemical stability, biocompatibility, nontoxicity, and good mechanical properties. The main approach for micro/nanoencapsulation of materials using PMMA as shell comprises emulsion-based techniques such as emulsion polymerization and solvent evaporation from oil-in-water emulsion. In the present review, we first focus on the encapsulation techniques of liquid materials with PMMA shell by analyzing the effective processing parameters influencing the preparation of PMMA micro/nanocapsules. We then describe the morphology of PMMA capsules in emulsion systems according to thermodynamic relations. The techniques to investigation of mechanical properties of capsule shell and the release mechanisms of core material from PMMA capsules were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48039.  相似文献   
7.
The crystallization of capped ultrathin polymer films is closely dependent on film thickness and interfacial interaction. Using dynamic Monte Carlo simulations, the crystallization behaviors of polymer films confined between two substrates were investigated. The crystallization rate of confined polymers is reduced with high interfacial interactions. Above a critical strength of interfacial interaction, polymer crystallization in the thin film is inhibited within the simulation time scales. An increase in film thickness leads to a rise in critical interfacial interaction. In thicker films, the chains have more space to change conformation to form crystal stems. In addition, there are fewer absorbed segments in confined chains for the thicker films, and thus the chains have stronger ability to adjust their conformation. Therefore an increase in film thickness can cause a reduction in the entropic barrier required for the formation of crystals and thus an increase in the critical interfacial interaction. © 2018 Society of Chemical Industry  相似文献   
8.
Nitrile rubber (NBR) blends with excellent performance have always been a hot research topic in petroleum field. Due to the excellent performance and compatibility of polyamide 6 (PA6), it provides an opportunity for the preparation of high-performance NBR/PA6 blends. In this article, NBR/PA6 blends were prepared by the three-step molding process. Experimentally, it was found that PA6 has a prominent reinforcement effect in NBR matrix. The variation of this mechanical property was investigated from different aspects of the crystal structure, crystallinities, phase morphology, and so on. It can be cleared that the formation of fibrous structure of PA6 phase is the main factor for reinforcement of the polymer blends. Meanwhile, the formation mechanism of the special phase structure induced by the three-step process is deeply expounded and its structural evolution schematic is established. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47472.  相似文献   
9.
采用1.0G超支化大分子(1.0G)、3-取代水杨醛和NiCl2·6H2O为原料,依次经席夫碱反应和络合反应合成了3种新型具有不同取代基位阻的超支化水杨醛亚胺配体及其镍系催化剂,利用红外光谱(FTIR)、核磁共振氢谱(1H NMR)、紫外光谱(UV-vis)、电喷雾质谱(ESI-MS)及电感耦合等离子体质谱(ICP-MS)等方法对合成出产物的结构进行表征。考察了配体空间位阻、溶剂种类、助催化剂种类及反应条件对催化乙烯齐聚性能的影响。研究结果表明,配体空间位阻对催化乙烯齐聚性能有较大的影响,当以甲苯为溶剂、甲基铝氧烷(MAO)为助催化剂,在最佳反应条件下,超支化邻苯基水杨醛亚胺镍系催化剂催化乙烯齐聚的活性为2.81×105g/(mol Ni·h),对高碳烯烃(C10+)的选择性为34.28%。此外,在超支化水杨醛亚胺镍系催化剂催化性能评价的基础上,对其催化乙烯齐聚的机理进行研究。  相似文献   
10.
Niobium and tantalum are found together in natural minerals. Leaching with concentrated acid solution or alkaline roasting followed by water/dilute acid leaching results in a solution containing these two metals. In this work, we reviewed the extraction and separation of Nb(V) and Ta(V) from leach liquors in the absence and presence of hydrofluoric acid by acidic, neutral extractants and amines. Several solvent extraction systems were compared in the light of the requirement of hazardous chemicals, extraction/separation efficiency, and stability/solubility of extractants. Since the cationic species of Nb(V) and Ta(V) are unstable in the aqueous solution, the application of acidic extractants for extraction and separation of these metals is limited. Amines can extract Nb(V) as well as Ta(V) irrespective of the presence of fluoride ion but the separation of these metals from the loaded amines should be carried out in stripping process, resulting in process complexity. Another disadvantage encountered for amine is related to high viscosity in extraction process. Neutral extractants are considered as promising extractants which are effective to separate Ta(V) and Nb(V) from either non-fluoride or to moderate fluoride ion concentration in terms of extraction, separation and stripping efficiency. Compared to the traditional methyl iso-butyl ketone (MIBK) based system, methyl isoamyl ketone (MIAK) is found to be a promising extractant to separate Nb(V) and Ta(V).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号