首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2637篇
  免费   87篇
  国内免费   103篇
电工技术   30篇
综合类   92篇
化学工业   914篇
金属工艺   159篇
机械仪表   106篇
建筑科学   114篇
矿业工程   63篇
能源动力   202篇
轻工业   85篇
水利工程   6篇
石油天然气   143篇
武器工业   7篇
无线电   187篇
一般工业技术   420篇
冶金工业   41篇
原子能技术   31篇
自动化技术   227篇
  2024年   1篇
  2023年   38篇
  2022年   73篇
  2021年   98篇
  2020年   78篇
  2019年   73篇
  2018年   74篇
  2017年   108篇
  2016年   74篇
  2015年   63篇
  2014年   131篇
  2013年   184篇
  2012年   127篇
  2011年   189篇
  2010年   157篇
  2009年   138篇
  2008年   151篇
  2007年   125篇
  2006年   126篇
  2005年   102篇
  2004年   103篇
  2003年   112篇
  2002年   75篇
  2001年   46篇
  2000年   48篇
  1999年   60篇
  1998年   48篇
  1997年   41篇
  1996年   28篇
  1995年   25篇
  1994年   28篇
  1993年   15篇
  1992年   18篇
  1991年   17篇
  1990年   12篇
  1989年   14篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1971年   1篇
排序方式: 共有2827条查询结果,搜索用时 755 毫秒
1.
High-temperature water electrolysis through solid oxide electrolysis cells (SOEC) will play a key role in building a hydrogen economy in the future. However, the delamination between the air electrode and the electrolyte remains a critical issue to be addressed. Previously, it was hypothesized that Co migration may improve the catalytic activity of the SrZrO3 second phase at the LSCF-YSZ interface, eventually leading to the delamination. In this work, the LSCF-YSZ interfaces sintered at different temperatures were examined in detail. The activation behaviors of the LSCF electrodes upon application with electrolysis current were characterized under different conditions. Further, samples containing purposely added SrZrO3 interlayer with and without cobalt were fabricated and compared. The activation process is less significant for the sample with cobalt-added SrZrO3 interlayer than the sample with pure SrZrO3 layer, supporting the hypothesis that Co migration may lead to the activation behavior.  相似文献   
2.
3.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
4.
Ni-based alloys are believed to be the most suitable brazing fillers for SiC ceramic application in a nuclear environment. However, graphite, which severely deteriorates the mechanical property of the joint, is inevitable when Ni reacts with SiC. In this paper, Different amounts of Zr powders are mixed with Inconel 625 powders to braze SiC at 1400 °C. When Zr addition reaches 40 wt%, the brazed seam confirms the absence of graphite. This research proves that Zr can avoid the graphite’s formation by suppressing Ni’s activity. The room-temperature shear strength of the joint with graphite’s absence is tested to be 81.97 MPa, which is almost three times higher than that of the joint with graphite. The interfacial reaction process and mechanism of the SiC joint are investigated and explained in this paper using thermodynamic calculations.  相似文献   
5.
《Ceramics International》2021,47(21):29681-29687
Inorganic piezoelectric ceramic composite is the potential sensing element for long-term structural health monitoring due to its excellent durability and compatibility. In this study, a Ceramicrete-based piezoelectric composite is proposed preliminarily, in which the magnesium potassium phosphate cement is used as the matrix and the lead zirconate titanate particle is utilized as the functional phase. Piezoelectric properties test and microstructure analysis are performed to evaluate the testing samples. Results show that the piezoelectric performance of the composite increase with the increase of piezoelectric ceramic particle size. The value of the piezoelectric strain factor (d33) can reach 83.8 pC/N, while the corresponding piezoelectric voltage factor (g33) is 50.1 × 10-3 V•m/N at the 50th day after polarization. Microstructure analysis illustrates that the interfacial transition zone (ITZ) between the matrix and the particles is dense. Moreover, the influence of aging on the composite is attributed to the continuous hydration after polarization. It indicates that the composites have a higher piezoelectric performance, which can be regarded as a promising sensing element material.  相似文献   
6.
《Ceramics International》2022,48(4):5066-5074
We studied the morphological nature of various thin films such as silicon carbide (SiC), diamond (C), germanium (Ge), and gallium nitride (GaN) on silicon substrate Si(100) using the pulsed laser deposition (PLD) method and Monte Carlo simulation. We, for the first time, systematically employed the visibility algorithm graph to meticulously study the morphological features of various PLD grown thin films. These thin-film morphologies are investigated using random distribution, Gaussian distribution, patterned heights, etc. The nature of the interfacial height of individual surfaces is examined by a horizontal visibility graph (HVG). It demonstrates that the continuous interfacial height of the silicon carbide, diamond, germanium, and gallium nitride films are attributed to random distribution and Gaussian distribution in thin films. However, discrete peaks are obtained in the brush and step-like morphology of germanium thin films. Further, we have experimentally verified the morphological nature of simulated silicon carbide, diamond, germanium, and gallium nitride thin films were grown on Si(100) substrate by pulsed laser deposition (PLD) at elevated temperature. Various characterization techniques have been used to study the morphological, and electrical properties which confirmed the different nature of the deposited films on the Silicon substrate. Decent hysteresis behavior has been confirmed by current-voltage (IV) measurement in all the four deposited films. The highest current has been measured for GaN at ~60 nA and the lowest current in SiC at ~30 nA level which is quite low comparing with the expected signal level (μA). The HVG technique is suitable to understand surface features of thin films which are substantially advantageous for the energy devices, detectors, optoelectronic devices operating at high temperatures.  相似文献   
7.
This paper deals with three-dimensional non-linear finite element analyses to assess the structural behavior of adhesively-bonded double supported tee joint of laminated FRP composites having embedded interfacial failures. The onset of interfacial failures is predicted by using Tsai–Wu coupled stress failure criterion with pre-determined stress values. The concept of fracture mechanics principle is utilized to study the sustainability of the tee joint having interfacial failures pre-existed at the critical locations. Individual modes of the strain energy release rates (SERR) GI, GII and GIII, are considered as the damage growth parameters and, are evaluated using the Modified crack closure integral (MCCI) technique based on the concept of linear elastic fracture mechanics (LEFM). Based on the stress analyses, it has been observed that the interfacial failures in tee joint structure trigger at the interface of base plate and adhesive layer from both ends of base plate. Depending on the SERR magnitudes, it has been noticed that the interfacial failure propagates under mixed mode condition. Therefore total SERR (GT) is considered as the governing parameter for damage propagation. Furthermore, efforts have been made to retard damage propagation rate by employing functionally graded adhesive (FGA) instead of monolithic adhesive material. Series of numerical simulations have been performed for varied interfacial failure length in functionally graded adhesively bonded double supported tee joint structure in order to achieve the significant effect of FGA with various modulus ratios on SERR. Material gradation of adhesive indicates significant SERR reduction at the incipient stage of failure which necessitates the use of functionally graded adhesive for the tee joint and prolong the service life of the structure.  相似文献   
8.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
9.
Surfactant flooding has widely been used as one of the chemically enhanced oil recovery (EOR) techniques. Surfactants majorly influence the interfacial tension, γ, between oil and brine phase and control capillary number and relative permeability behavior and, thus, influence ultimate recovery. Additives, such as nanoparticles, are known to affect surfactant properties and are regarded as promising EOR agents. However, their detailed interactions with surfactants are not well understood. Thus, in this work, we examined the influence of silica nanoparticles on the ability of surfactants to lower γ and to increase viscosity at various temperatures and salinities. Results show that the presence of nanoparticles decreased γ between n-decane and various surfactant formulations by up to 20%. It was found that γ of nanoparticles–surfactant solutions passed through a minimum at 35 °C when salt was added. Furthermore, the viscosity of cationic surfactant solutions increased at specific salt (1.5 wt.%) and nanoparticle (0.05 wt.%) concentrations. Results illustrate that selected nanoparticles–surfactant formulations appear very promising for EOR as they can lower brine/n-decane interfacial tension and act as viscosity modifiers of the injected fluids.  相似文献   
10.
In fractured reservoirs, an effective matrix-fracture mass transfer is required for oil recovery. Surfactants have long been considered for oil recovery enhancement, mainly in terms of their ability to reduce oil–water interfacial tension. These surfactants are effective when the fractured formations are water-wet, where capillary imbibition of surfactants from the fracture into the matrix contributes to oil recovery. However, another beneficial aspect of surfactants, namely their ability to alter wettability, remains to be explored and exploited. Surfactants capable of altering wettability can be especially beneficial in oil-wet fractured formations, where the surfactant in the fracture diffuses into the matrix and alters the wettability, enabling imbibition of even more surfactant into the matrix. This sequential process of initial diffusion followed by imbibition continues well into the matrix yielding significant enhancements in oil recovery.In order to test this hypothesis of sequential diffusion–imbibition phenomenon, Dual-Drop Dual-Crystal (DDDC) contact angle experiments have been conducted using fractured Yates dolomite reservoir fluids, two types of surfactants (nonionic and anionic) and dolomite rock substrates. A new experimental procedure was developed in which crude oil equilibrated with reservoir brine has been exposed to surfactant to simulate the matrix-fracture interactions in fractured reservoirs. This procedure enables the measurements of dynamic contact angles and oil–water interfacial tensions, in addition to providing the visual observations of the dynamic behavior of crude oil trapped in the rock matrix as it encounters the diffusing surfactant from the fractures. Both the measurements and visual observations indicate wettability alterations of the matrix surface from oil-wet to less oil-wet or intermediate wet by the surfactants. Thus this study is of practical importance to oil-wet fractured formations where surfactant-induced wettability alterations can result in significant oil recovery enhancements. In addition, this study has also identified the need to include contact angle term in the dimensionless Bond number formulations for better quantitative interpretation of rock–fluids interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号