首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23724篇
  免费   2569篇
  国内免费   1960篇
电工技术   507篇
综合类   2302篇
化学工业   1708篇
金属工艺   4313篇
机械仪表   2704篇
建筑科学   2762篇
矿业工程   562篇
能源动力   537篇
轻工业   989篇
水利工程   466篇
石油天然气   642篇
武器工业   291篇
无线电   1170篇
一般工业技术   7050篇
冶金工业   1195篇
原子能技术   161篇
自动化技术   894篇
  2024年   73篇
  2023年   385篇
  2022年   534篇
  2021年   726篇
  2020年   879篇
  2019年   833篇
  2018年   728篇
  2017年   960篇
  2016年   1049篇
  2015年   1069篇
  2014年   1288篇
  2013年   1461篇
  2012年   1530篇
  2011年   1656篇
  2010年   1204篇
  2009年   1369篇
  2008年   1227篇
  2007年   1390篇
  2006年   1279篇
  2005年   1132篇
  2004年   1004篇
  2003年   842篇
  2002年   704篇
  2001年   671篇
  2000年   633篇
  1999年   547篇
  1998年   446篇
  1997年   441篇
  1996年   391篇
  1995年   319篇
  1994年   265篇
  1993年   222篇
  1992年   209篇
  1991年   148篇
  1990年   140篇
  1989年   117篇
  1988年   86篇
  1987年   46篇
  1986年   28篇
  1985年   46篇
  1984年   46篇
  1983年   43篇
  1982年   42篇
  1981年   12篇
  1980年   16篇
  1979年   5篇
  1977年   2篇
  1958年   2篇
  1955年   2篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
In the present work, the bonding length, electronic structure, stability, and dehydrogenation properties of the Perovskite-type ZrNiH3 hydride, under different uniaxial/biaxial strains are investigated through ab-initio calculations based on the plane-wave pseudo-potential (PW-PP) approach. The findings reveal that the uniaxial/biaxial compressive and tensile strains are responsible for the structural deformation of the ZrNiH3 crystal structure, and its lattice deformation becomes more significant with decreasing or increasing the strain magnitude. Due to the strain energy contribution, the uniaxial/biaxial strain not only lowers the stability of ZrNiH3 but also decreases considerably the dehydrogenation enthalpy and decomposition temperature. Precisely, the formation enthalpy and decomposition temperature are reduced from ?67.73 kJ/mol.H2 and 521 K for non-strained ZrNiH3 up to ?33.73 kJ/mol.H2 and 259.5 K under maximal biaxial compression strain of ε = ?6%, and to ?50.99 kJ/mol.H2 and 392.23 K for the maximal biaxial tensile strain of ε = +6%. The same phenomenon has been also observed for the uniaxial strain, where the formation enthalpy and decomposition temperature are both decreased to ?39.36 kJ/mol.H2 and 302.78 K for a maximal uniaxial compressive strain of ε = - 12%, and to ?51.86 kJ/mol.H2 and 399 K under the maximal uniaxial tensile strain of ε = +12%. Moreover, the densities of states analysis suggests that the strain-induced variation in the dehydrogenation and structural properties of ZrNiH3 are strongly related to the Fermi level value of total densities of states. These ab-initio calculations demonstrate insightful novel approach into the development of Zr-based intermetallic hydrides for hydrogen storage practical applications.  相似文献   
2.
By the first-principles calculations, the sensitivity of CO, H2O and NO adsorption on Au doped SnSe2 monolayer surface is investigated. The results show that CO and H2O molecules are physically adsorbed on Au doped SnSe2 monolayer and act as donors to transfer 0.012 e and 0.044 e to the substrate, respectively. However, the NO molecule is chemically adsorbed on substrate and acts as an acceptor to obtain 0.116 e from the substrate. In addition, our results also show that the biaxial strain can effectively improve the adsorption energy and charge transfer of gas molecules adsorbed on the substrate surface. Also, the recovery time of desorbed gas molecules on the substrate surface is calculated, and the results indicate that the Au doped SnSe2 is a perfect sensing material for detection and recovery of CO and NO under ?8% strain.  相似文献   
3.
4.
In this article an attempt to determine the influence of mining factors on the seismic activity during the longwall mining of the upper layer of coal seam no. 405/2 in one of the Polish hard coal mines in the Upper Silesian Coal Basin was conducted. Two longwall panels were mined in analogous geological conditions and based on the same mining system and technology. However, there was significant difference with regards to the mining factors, which was reflected in the observed seismic activity. Some tools used in mining seismology were applied to illustrate the aforementioned influence of mining factors, e.g. the frequency-energy distribution, the frequency-magnitude distribution, the 2 D distribution of released seismic energy, the relationship between released seismic energy and the volume of mined coal, the Benioff strain release, and the Gutenberg-Richter(GR) b coefficient distribution(b is the proportion between high and low energy tremors). Concerning the Benioff strain release, a new solution, based on the slope of a fitted line in a moving time window, is proposed.  相似文献   
5.
During the service life of structural sealant glazing (SSG) facades, the load-bearing capacity of the silicone bonds needs to be guaranteed. Laboratory tests can assess the durability of SSG-systems based on mechanical characteristics of the bond after simultaneous exposure to both climatic and mechanical loads. This article studies how the material characteristics of two common structural sealants are affected by laboratory and field exposure. Dynamic mechanical analysis (DMA) confirms a reduction in the dynamic modulus of exposed silicone samples. Results from thermogravimetric analysis, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and small-angle X-ray scattering/wide-angle X-ray scattering show differences between the two sealants and indicate no/minor changes in the composition and morphology of the laboratory and field exposed sealants. Mechanical characterization methods, such as DMA, and tensile and shear testing of the structural bond, are shown to be sensitive toward the combined climatic and mechanical loadings, and are hence suitable for studying degradation mechanisms of structural sealants.  相似文献   
6.
A strategy that constructs the morphotropic phase boundary and manipulates the domain structure has been used to design the component of 0.96[Bi0.5(Na0.84K0.16)0.5Ti(1-x)NbxO3]-0.04SrTiO3 (BNKT-4ST-100xNb) to enhance the strain properties for actuator application. Non-equivalent Nb5+ donor doping modulates the phase transition from the mixture of rhombohedral and tetragonal phases to the pseudocubic phase and results in the coexistence of multiple phases. Moreover, the high-resolution TEM confirms the existence of polar nano regions that contribute to the macroscopic relaxor behaviour. The size of the domains is reduced with increasing Nb5+, resulting in an enhanced relaxor behaviour. The ferroelectric-relaxor transition temperature decreases from 85 to below 30 °C, implying a non-ergodic to ergodic relaxor transition. An improved strain of 0.56% and a giant normalized strain of 1120 pm/V were achieved for BNKT-4ST-1.5Nb, which were attributed to the unique domain structure in which nanodomains are embedded in an undistorted cubic matrix. Ferroelectric, antiferroelectric, and relaxor phases coexist. As the electric field is large enough, a reversible phase transition occurs. Furthermore, good temperature stability was obtained due to the stability of the nanodomains, and no degradation in strains was observed even after 104 cycles, which may originate from the reversible phase transition and dynamic domain wall. The results show that this design strategy offers a reference way to improve the strain behaviour and that BNKT-4ST-100xNb ceramics could be a potential material for high-displacement actuator applications.  相似文献   
7.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
8.
PurposeAccommodative micro-fluctuations (AMF) are small dioptric changes during accommodation. The aim of this study was to evaluate and compare changes in AMF when wearing silicone hydrogel contact lenses of two different optical designs.MethodsA multi-centre, randomised, cross-over, non-dispensing study was conducted on 68 adapted contact lens wearers aged 25–35 years to compare AMF responses to a spherical and aspheric silicone hydrogel (comfilcon A) lens designs. A Righton Speedy “i” series Auto Refractometer in accommodation analyser mode was utilized before and after reading a standard text in font size 8 on an iPhone 5 for 20 min at a 25 cm viewing distance. Phone screen brightness was set by automatic adjustment mode and ambient illumination was controlled at all sites.ResultsMean ± SD AMF change from before to after the reading task was 2.25 ± 5.6 and 0.13 ± 5.7 (relative values) for the spherical and aspheric lens designs, respectively. The difference was statistically significant (P = 0.017, Paired t-test).ConclusionsThe smaller change in AMF when using an aspheric lens design suggests reduced ciliary muscle stress when reading print on a smart phone at a close distance for short periods (20 min). Contact lens wearers who frequently use digital devices and are experiencing eye strain may benefit from switching from a spherical design to one that incorporates aspheric optics.  相似文献   
9.
Optical studies of residual strain in cadmium telluride (CdTe) films grown using molecular beam epitaxy on gallium arsenide (GaAs) substrate have been performed using photoreflectance techniques. Measurements have been conducted to determine the fundamental transition energy, heavy-hole and light-hole transition energy critical-point parameters in a range of temperatures between 12 and 300 K. There are problems inherent in the fabrication of optoelectronic devices using high-quality CdTe films, due to strain effects resulting from both the lattice mismatch (CdTe: 14.6%) and the thermal expansion coefficient difference. The CdTe film exhibits compressive stress causing valence-band splitting for light and heavy holes. We have used different models to fit the obtained experimental data and, although the critical thickness for the CdTe has been surpassed, the strain due to the lattice mismatch is still significant. However, the strain due to the thermal expansion is dominant. We have found that the fundamental transition energy, E0, is affected by the compressive strain and the characteristic values are smaller than those reported. In addition, the total strain is compressive for the full measured range, since the strain due to the lattice mismatch is one order of magnitude higher than that calculated from the thermal expansion.  相似文献   
10.
The in vitro lifetime assessment of dental zirconia has been the focus of researchers. This work mainly studied the cyclic fatigue lifetime in saliva and aging lifetime of three commercial zirconia dental materials: two kinds of 3 mol%-yttria stabilized zirconia ST(super-translucence) and MT(medium-translucence), in which MT contains a small amount of alumina; a 5 mol%-yttria stabilized zirconia TT(tooth-translucency). ST and MT materials have higher initial mechanical strength (flexural strength) and initial crack propagation threshold than TT materials, thus they have longer cycle fatigue lifetime, but TT has best aging resistance(no aging) in existing aging procedures. MT has a higher initial mechanical strength and better aging resistance than ST samples due to the influence of alumina at grain boundary, but has lower strength reliability. Finally the service lifetime of the three materials was evaluated, and some guidance for their use is provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号