首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   882篇
  免费   5篇
  国内免费   15篇
电工技术   3篇
综合类   8篇
化学工业   447篇
金属工艺   17篇
机械仪表   6篇
能源动力   126篇
轻工业   40篇
水利工程   1篇
石油天然气   2篇
无线电   25篇
一般工业技术   203篇
冶金工业   6篇
原子能技术   1篇
自动化技术   17篇
  2023年   14篇
  2022年   28篇
  2021年   38篇
  2020年   25篇
  2019年   30篇
  2018年   45篇
  2017年   37篇
  2016年   38篇
  2015年   22篇
  2014年   56篇
  2013年   39篇
  2012年   41篇
  2011年   104篇
  2010年   76篇
  2009年   72篇
  2008年   66篇
  2007年   66篇
  2006年   27篇
  2005年   37篇
  2004年   26篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
排序方式: 共有902条查询结果,搜索用时 156 毫秒
1.
In this paper, a novel hybrid structure of Pd doped ZnO/SnO2 heterojunction nanofibers with hexagonal ZnO columns was one step synthesized from electrospun precursor nanofibers. Due to the synergistic effect of hexagonal ZnO, SnO2 and Pd, the structure exhibited excellent hydrogen (H2) gas sensing properties. At low-temperature of 120 °C, the response (Ra/Rg) to 100 ppm H2 gas exceeded 160, the response/recovery time was only 20 s and 6 s respectively and the limit of detection was only 0.5 ppm. Meanwhile, it also had good selectivity for H2 gas and excellent linearity. In addition, the materials were characterized by XRD, FESEM, HRTEM, XPS, and the synthesis mechanism and gas sensing mechanism were proposed.  相似文献   
2.
Ultrawide band gap semiconductor materials have attracted considerable attention in recent years owing to their great potential in the photocatalytic field. In this study, Zn-doped Ga2O3 nanofibers with various concentrations were synthesized via electrospinning; they exhibited a superior photocatalytic degradation performance of rhodamine B dye compared to that of undoped Ga2O3 nanofibers. The Zn dopant replaced Ga sites via replacement doping, which could increase the concentration of oxygen vacancies and lead to enhanced photocatalytic properties. When the Zn concentration increased, a Ga2O3/ZnGa2O4 hybrid structure formed, which could further enhance the photocatalytic performance. The separation of photogenerated carriers due to Zn doping and heterojunctions were the primary causes of the enhanced photocatalytic performance. This study provides experimental data for the fabrication of high-performance photocatalysts based on Ga2O3 nanomaterials.  相似文献   
3.
Nonwoven super‐hydrophobic fiber membranes have potential applications in oil–water separation and membrane distillation, but fouling negatively impacts both applications. Membranes were prepared from blends comprising poly(vinylidene fluoride) (PVDF) and random zwitterionic copolymers of poly(methyl methacrylate) (PMMA) with sulfobetaine methacrylate (SBMA) or with sulfobetaine‐2‐vinylpyridine (SB2VP). PVDF imparts mechanical strength to the membrane, while the copolymers enhance fouling resistance. Blend composition was varied by controlling the PVDF‐to‐copolymer ratio. Nonwoven fiber membranes were obtained by electrospinning solutions of PVDF and the copolymers in a mixed solvent of N,N‐dimethylacetamide and acetone. The PVDF crystal phases and crystallinities of the blends were studied using wide‐angle X‐ray diffraction and differential scanning calorimetry (DSC). PVDF crystallized preferentially into its polar β‐phase, though its degree of crystallinity was reduced with increased addition of the random copolymers. Thermogravimetry (TG) showed that the degradation temperatures varied systematically with blend composition. PVDF blends with either copolymer showed significant increase of fouling resistance. Membranes prepared from blends containing 10% P(MMA‐ran‐SB2VP) had the highest fouling resistance, with a fivefold decrease in protein adsorption on the surface, compared to homopolymer PVDF. They also exhibited higher pure water flux, and better oil removal in oil–water separation experiments. © 2018 Society of Chemical Industry  相似文献   
4.
Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only solvent. Morphological characterizations demonstrate that the LSCF fibers have highly crystalline structure with uniform elemental distribution. After heat treatment, the average fiber diameter is 250 nm and the porosity of the nanofiber tissue is 37.5 %. The heat treated LSCF nanofibers are applied directly onto a Ce0.9Gd0.1O1.95 (CGO) electrolyte disk to form a symmetrical cell. Electrochemical characterization is carried out through electrochemical impedance spectroscopy (EIS) in the temperature range 550?°C–950?°C, and reproducibility of the electrochemical performance for a series of cells is demonstrated. At 650?°C, the average measured polarization resistance Rp is 1.0 Ω cm2. Measured performance decay is 1 % during the first 33?h of operation at 750?°C, followed by an additional 0.7 % over the subsequent 70?h.  相似文献   
5.
The aim of the present contribution is to study the influence of the post-spinning heat - treatment of single TiO2/PVP precursor fibers on the properties and morphology of the final titanium-based microfibers. The post-spinning treatment conditions were: calcination in air at 450–600?°C and pyrolysis in argon at 1000–1700?°C. Calcination resulted in a production of anatase-rich and pure rutile fibers. The use of an alternative sintering method, the low-temperature plasma treatment, led to the crystallization of the composite Magnéli phases/polymer fibers. As a result of the same one precursor, pyrolysis at 1000?°C, the Carbon/TiO2 composite fibers were obtained. Rising the treatment temperature in inert atmosphere led to the formation of the titanium carbide fibers. The formation process and all the obtained products were characterized by differential scanning calorimetry accompanied with thermogravimetric analysis (DSC/TGA), scanning and transmission electron microscopy (SEM, TEM), X-ray diffraction (XRD), and image analysis techniques.  相似文献   
6.
Poly(3-hydroxyalkanoate)s, PHAs, have been covalently grafted onto the surface of multi-walled carbon nanotubes, MWCNTs, providing nanofillers (MWCNT-graft-PHAs) with enhanced compatibility and reinforcement effect towards PHAs. MWCNTs were first modified by in-situ generated diazonium cations obtained from a hydroxyl-containing aniline derivative, yielding MWCNTs with reactive hydroxyl surface groups, MWCNT-OH. Then, MWCNT-graft-PHAs were obtained by direct, i.e. without using any catalyst, transesterification approach. The successful chemical modification of MWCNTs surface was evidenced by Raman spectroscopy and XPS analysis confirming the covalent grafting of PHA on MWCNT. 3-Dimension mats were further produced through electrospinning of a PHA/MWCNT-graft-PHA solution providing nanocomposites with well-defined nanofibrous morphology. No aggregation of the MWCNTs was evidenced by SEM attesting that the grafting of PHA onto MWCNT improved their dispersion within the PHA matrix and consequently, the properties of the corresponding nanomaterials. Indeed, mechanical analysis results have shown that nanofibers loaded with MWCNT-graft-PHA (3 wt%) displayed excellent properties with an increase (+41%) of the tensile strain at break without any decrease of the high elastic modulus as compared to pristine PHA (131 MPa).  相似文献   
7.
Hybrid hollow multi-walled carbon nanotubes (MWCNTs)/polyelectrolytes (PE) nanofibers were prepared by a combination of the electrospinning method and layer-by-layer (LbL) technique. The mixed polystyrene (PS)/MWCNTs nanofibers were obtained by electrospinning method, which were employed as templates to self-assembly multilayered polyelectrolytes by LbL technique. Hollow MWCNTs/PE nanofibers were obtained by selectively removed part of the template: PS, which is confirmed by Raman spectra, transmission electron microscopy (TEM) and scanning electron microscopy (SEM).  相似文献   
8.
In this paper, a new image analysis based method for electrospun nanofiber diameter measurement has been presented. The method was tested by a simulated image with known characteristics and a real web. Mean (M) and standard deviation (STD) of fiber diameter obtained using this method for the simulated image were 15.02 and 4.80 pixels respectively, compared to the true values of 15.35 and 4.47 pixels. For the real web, applying the method resulted in M and STD of 324 and 50.4 nm which are extremely close to the values of 319 and 42 nm obtained using manual method. The results show that this approach is successful in making fast, accurate automated measurements of electrospun fiber diameters.  相似文献   
9.
Electrospinning of hydroxyapatite fibrous mats   总被引:1,自引:0,他引:1  
Xiaoshu Dai 《Materials Letters》2007,61(13):2735-2738
Polyvinyl alcohol (PVA) with an average molecular weight between 40,500 and 155,000 g/mol was electrospun with a calcium phosphate based sol. The sol was prepared by reacting triethyl phosphite and calcium nitrate and was directly added to an aqueous solution of PVA. This mixture was electrospun at a voltage of 20 kV. The results indicate that the sol was distributed uniformly in the PVA fibers, whose diameter was on the order of 2 μm. This electrospun structure was calcined at 600 °C for 6 h to obtain a residual inorganic, fibrous network, with fiber diameters between 200 and 800 nm. The fibrous structure consists predominantly of hydroxyapatite with an average crystal size of almost 10 to 30 nm. A variety of structures including non-woven mats of solid or micro-porous hydroxyapatite fibers and highly porous scaffolds could be obtained by varying the polymer molecular weight and the sol volume fraction. These structures can have many potential uses in the repair and treatment of bone defects, drug delivery and tissue engineering.  相似文献   
10.
Keun-Hyung Lee  D. Bruce Chase 《Polymer》2006,47(23):8013-8018
Isotactic poly(4-methyl-1-pentene) (P4M1P) is a widely used polymer in industrial applications and specifically, in medical products. Producing micro- or nanofibers would expand the usefulness of P4M1P to a broad range of medical applications. The choice and quality of solvent for the solution used for electrospinning can have a dramatic effect on the spinnability of fibers and on their morphological appearance. In this study, four solvent systems: cyclohexane, cyclohexane/acetone mixture, cyclohexane/dimethyl formamide (DMF) mixture and cyclohexane/acetone/DMF mixture have been investigated. As demonstrated by FE-SEM, electrospun fibers with different morphologies including round, twisted with a roughened texture, curled and twisted-ribbon shapes were formed. The fiber shape and morphology depended strongly on the type and amount of non-solvent used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号