首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4670篇
  免费   68篇
  国内免费   176篇
电工技术   57篇
技术理论   1篇
综合类   84篇
化学工业   916篇
金属工艺   220篇
机械仪表   335篇
建筑科学   134篇
矿业工程   50篇
能源动力   195篇
轻工业   283篇
水利工程   6篇
石油天然气   51篇
武器工业   4篇
无线电   573篇
一般工业技术   910篇
冶金工业   102篇
原子能技术   686篇
自动化技术   307篇
  2024年   4篇
  2023年   34篇
  2022年   57篇
  2021年   78篇
  2020年   64篇
  2019年   49篇
  2018年   44篇
  2017年   98篇
  2016年   81篇
  2015年   84篇
  2014年   147篇
  2013年   212篇
  2012年   216篇
  2011年   419篇
  2010年   340篇
  2009年   271篇
  2008年   232篇
  2007年   283篇
  2006年   269篇
  2005年   189篇
  2004年   192篇
  2003年   153篇
  2002年   168篇
  2001年   121篇
  2000年   133篇
  1999年   121篇
  1998年   96篇
  1997年   125篇
  1996年   84篇
  1995年   101篇
  1994年   71篇
  1993年   70篇
  1992年   64篇
  1991年   64篇
  1990年   55篇
  1989年   53篇
  1988年   20篇
  1987年   7篇
  1986年   12篇
  1985年   18篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1975年   1篇
排序方式: 共有4914条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(12):16808-16812
Flash sintering has been reported in various ceramics. Nevertheless, anion and cation conductors exhibit different flash-sintering behaviors, and the interaction mechanism between the conductive species and the sintering environment has remained unclear. Herein, we report the flash-sintering phenomena of a typical cation conductor, Na3Zr2(SiO4)2(PO4) with anode region surrounded by air and NaNO3 environments. The results prove that the ionic behavior and joule heating distribution can be controlled by changing the electrode environment. Four possible scenarios describing the ion migration behavior and interaction with the environment are proposed for providing a guidance for controlling the ion interaction behavior during flash sintering.  相似文献   
2.
In this work, 0.5TRPO•0.5Gd2Zr2O7 ceramic with an average grain size of only ∼15 nm was prepared by a high pressure (5 GPa/520 °C) sintering method. Phase evolutions and microstructure changes of the as-fabricated super nano and micron-grained ceramics under a high-dose displacement damage induced by 300 keV Kr2+ ions were investigated. The results show that the super nano-grained ceramic has low degree of amorphization, obvious grain growth (2–3 times in grain size) and big Kr bubbles (10–68 nm) formation after irradiation. The micron-grained ceramic was severely amorphized after irradiation and many microcracks were formed parallel to its surface. The formation mechanism of Kr bubbles in the super nano-grained ceramic is on account of grain boundary diffusion and migration induced by the accumulation of the injecting Kr ions and irradiation defects. Nevertheless, microcracks formed in the micron-grained sample are caused by the accumulation of Kr atoms.  相似文献   
3.
We investigate the problem of efficient wireless power transfer in wireless sensor networks. In our approach, special mobile entities (called the Mobile Chargers) traverse the network and wirelessly replenish the energy of sensor nodes. In contrast to most current approaches, we envision methods that are distributed and use limited network information. We propose four new protocols for efficient charging, addressing key issues which we identify, most notably (i) what are good coordination procedures for the Mobile Chargers and (ii) what are good trajectories for the Mobile Chargers. Two of our protocols (DC, DCLK) perform distributed, limited network knowledge coordination and charging, while two others (CC, CCGK) perform centralized, global network knowledge coordination and charging. As detailed simulations demonstrate, one of our distributed protocols outperforms a known state of the art method, while its performance gets quite close to the performance of the powerful centralized global knowledge method.  相似文献   
4.
《Ceramics International》2015,41(7):8614-8622
SnO2–ZnO nanocomposite thin films, prepared by a simple carbothermal reduction based vapor deposition method, were irradiated with 8 MeV Si3+ ions for engineering the morphological and optical properties. The surface morphology of the nanocomposites was studied by atomic force microscopy (AFM), while the optical properties were investigated by photoluminescence spectroscopy (PL) and Raman spectroscopy. AFM studies on the irradiated samples revealed growth of nanoparticles at lower fluence and a significant change in surface morphology leading to the formation of nanosheets and their aggregates at higher fluences. A tentative mechanism underlying the observed ion induced evolution of surface morphology of SnO2–ZnO nanocomposite is proposed. PL studies revealed strong enhancement in the UV emissions from the nanocomposite thin film at lower fluence, while a drastic decrease in the UV emissions along with a significant enhancement in the defect emissions has been observed at higher fluences.  相似文献   
5.
Indium separation using ion exchange resins from acidic polymetallic and very diluted solutions are investigated. Since the selectivity of commercial ion exchange resins have proven to be too low for an effective separation from solutions with high content of other metals, Lewatit® TP 208 was impregnated with common extractants to enhance its properties. By resin impregnation with D2EHPA and Cyanex 272, not only the selective indium recovery was reached but also the resin capacity was increased approx. two times. The best loading and elution performance were shown by Cyanex 272-impregnated Lewatit® TP 208, increasing the indium purity in the eluate from 0.75 % to 85 %.  相似文献   
6.
Hydrothermally prepared zinc oxide nanorods are sulphonated (S–ZnO NR) and incorporated into 15% Sulphonated Poly (1,4-Phenylene Ether Ether Sulfone) (SPEES) to improve the hydrophilicity, water uptake and ion transfer capacity. Water uptake and ion transfer capacity increased to 34.6 ± 0.6% and 2.0 ± 0.05 meq g?1 from 29.8 ± 0.3% and 1.4 ± 0.04 meq g?1 by adding 7.5 wt% S–ZnO NR to SPEES. Morphological studies show the prepared S–ZnO NR is well dispersed in the polymer matrix. SPEES +7.5 wt% S–ZnO NR membrane exhibits optimum performance after three-weeks of continual operation in a fabricated microbial fuel cell (MFC) to produce a maximum power density of 142 ± 1.2 mW m?2 with a reduced biofilm compared to plain SPEES (59 ± 0.8 mW m?2), unsulphonated filler incorporated SPEES (SPEES + 7.5 wt% ZnO, 68 ± 1.1 mW m?2) and Nafion (130 ± 1.5 mW m?2) thereby suggesting its suitability as a sustainable and improved cation exchange membrane (CEM) for MFCs.  相似文献   
7.
Human mobility prediction is of great advantage in route planning and schedule management. However, mobility data is a high-dimensional dataset in which multi-context prediction is difficult in a single model. Mobility data can usually be expressed as a home event, a work event, a shopping event and a traveling event. Previous works have only been able to learn and predict one type of mobility event and then integrate them. As the tensor model has a strong ability to describe high-dimensional information, we propose an algorithm to predict human mobility in tensors of location context data. Using the tensor decomposition method, we extract human mobility patterns with multiple expressions and then synthesize the future mobility event based on mobility patterns. The experiment is based on real-world location data and the results show that the tensor decomposition method has the highest accuracy in terms of prediction error among the three methods. The results also prove the feasibility of our multi-context prediction model.  相似文献   
8.
Cyclic tension and bend tests were performed on heat-resistant 12Cr1MoV steel specimens in as-supplied condition as well as after Zr+ ion beam surface irradiation. Distinct differences in strain induced relief, as well in cracking pattern of modified surface layer were observed by optical microscopy and interference profilometry. Changes in subsurface layer are characterized by means of nano- and microindentation and fractography of fracture surfaces (with the help of scanning electron microscopy). It is shown that the main influence on mechanical properties is mostly induced by thermal treatment during irradiation rather than formation of a 2 μm thick layer doped with Zr. The differences in deformation behavior may be explained by physical mesomechanics concepts.  相似文献   
9.
Wireless Body Area Networks (WBANs) are envisaged to play crucial role in psychological, medical and non-medical applications. This paper presents iM-SIMPLE; a reliable, and power efficient routing protocol with high throughput for WBAN. We deploy sensor nodes on human body to measure the physiological parameters such as blood pressure, temperature, glucose, lactic acid, EMG, acceleration, pressure, and position. Data from sensors is forwarded to intermediate node, from where it is transmitted to sink. An end user can access the required information available at sink via internet. To minimize energy consumption of the network, we utilize multi-hop mode of communication. A cost function is introduced to select the forwarder; node with high residual energy and least distance to sink has minimum cost function value and is selected. Residual energy parameter balances the energy consumption among the sensor nodes, and least distance improves packet delivery to sink because of reduced less path loss. We formulate the minimum energy consumption and high throughput problems as an Integer Linear Program. In order to support mobility, we also consider two body postures. Simulation results confirm the performance advantage of iM-SIMPLE compared to contemporary schemes in terms of maximizing stability period and throughput of the network.  相似文献   
10.
High ion selectivity and mechanical strength are critical properties for proton exchange membranes in vanadium redox flow batteries. In this work, a novel sulfonated poly(ether sulfone) hybrid membrane reinforced by core-shell structured nanocellulose (CNC-SPES) is prepared to obtain a robust and high-performance proton exchange membrane for vanadium redox flow batteries. Membrane morphology, proton conductivity, vanadium permeability and tensile strength are investigated. Single cell tests at a range of 40–140 mA cm−2 are carried out. The performance of the sulfonated poly(ether sulfone) membrane reinforced by pristine nanocellulose (NC-SPES) and Nafion® 212 membranes are also studied for comparison. The results show that, with the incorporation of silica-encapsulated nanocellulose, the membrane exhibits outstanding mechanical strength of 54.5 MPa and high energy efficiency above 82% at 100 mA cm−2, which is stable during 200 charge-discharge cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号