首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3188篇
  免费   88篇
  国内免费   64篇
电工技术   25篇
综合类   91篇
化学工业   964篇
金属工艺   119篇
机械仪表   42篇
建筑科学   58篇
矿业工程   162篇
能源动力   461篇
轻工业   527篇
水利工程   7篇
石油天然气   110篇
武器工业   3篇
无线电   55篇
一般工业技术   284篇
冶金工业   121篇
原子能技术   96篇
自动化技术   215篇
  2024年   2篇
  2023年   38篇
  2022年   69篇
  2021年   102篇
  2020年   108篇
  2019年   96篇
  2018年   82篇
  2017年   92篇
  2016年   116篇
  2015年   69篇
  2014年   148篇
  2013年   209篇
  2012年   186篇
  2011年   262篇
  2010年   191篇
  2009年   183篇
  2008年   161篇
  2007年   160篇
  2006年   135篇
  2005年   96篇
  2004年   103篇
  2003年   84篇
  2002年   88篇
  2001年   71篇
  2000年   82篇
  1999年   67篇
  1998年   64篇
  1997年   44篇
  1996年   45篇
  1995年   41篇
  1994年   31篇
  1993年   32篇
  1992年   18篇
  1991年   18篇
  1990年   8篇
  1989年   12篇
  1988年   5篇
  1987年   6篇
  1986年   7篇
  1985年   5篇
  1984年   2篇
  1981年   1篇
  1975年   1篇
排序方式: 共有3340条查询结果,搜索用时 15 毫秒
1.
In the present study, metal-free catalysts for efficient H2 generation from NaBH4 methanolysis was produced for the first time from apricot kernel shells with two-step activation. The first stage of the two-stage activation includes the production of activated carbon with the KOH agent (AKOH), and the second stage includes hydrothermally HNO3 activation with oxygen doping (O doped AKOH + N). The hydrogen production rate (HGR) and the activation energy (Ea) of the reaction with the obtained metal-free catalyst (10 mg) were determined as 14,444 ml min?1 g?1 and 7.86 kJ mol?1, respectively. The structural and physical-chemical properties of these catalysts were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy), elemental CHNS analysis, FT-IR (Fourier transform infrared spectroscopy), and nitrogen adsorption analysis. Also, the reusability results of this metal-free catalyst for H2 production are promising.  相似文献   
2.
《Ceramics International》2022,48(12):17185-17195
This study introduces micro-nano bubbles (MNBs) in the process of polishing zirconia ceramics through sodium borohydride hydrolysis to assist in polishing yttria-stabilized zirconia (YSZ). Compared with conventional silica sol, the material removal rate using this MNB-assisted technology is increased by 261.4%, and a lower surface roughness of 1.28 nm can be obtained. Raman, X-ray diffraction, and X-ray photoelectron spectroscopy are used to study the structural changes and phase stability of the YSZ during different polishing periods. The results show that MNBs are the key factor promoting the transformation from the tetragonal phase to the monoclinic phase on the surface of the YSZ during polishing. The H2O molecules (or OH? ions) on the surface of the YSZ are driven by the thermal kinetic energy of the micro-jets formed by the collapse of micro-bubbles, and they permeate to occupy more oxygen vacancies in the crystal lattice. Atomic force microscopy and nano-indentation tests show that the micro-protrusions on the surface of the YSZ preferentially undergo phase transformation, and their hardness decreases. This promotes abrasives to preferentially remove rough spots on the surface and achieve more efficient polishing. We believe this work adds valuable insights regarding low-temperature degradation and ultra-precise machining of YSZ ceramic materials.  相似文献   
3.
A strategy that constructs the morphotropic phase boundary and manipulates the domain structure has been used to design the component of 0.96[Bi0.5(Na0.84K0.16)0.5Ti(1-x)NbxO3]-0.04SrTiO3 (BNKT-4ST-100xNb) to enhance the strain properties for actuator application. Non-equivalent Nb5+ donor doping modulates the phase transition from the mixture of rhombohedral and tetragonal phases to the pseudocubic phase and results in the coexistence of multiple phases. Moreover, the high-resolution TEM confirms the existence of polar nano regions that contribute to the macroscopic relaxor behaviour. The size of the domains is reduced with increasing Nb5+, resulting in an enhanced relaxor behaviour. The ferroelectric-relaxor transition temperature decreases from 85 to below 30 °C, implying a non-ergodic to ergodic relaxor transition. An improved strain of 0.56% and a giant normalized strain of 1120 pm/V were achieved for BNKT-4ST-1.5Nb, which were attributed to the unique domain structure in which nanodomains are embedded in an undistorted cubic matrix. Ferroelectric, antiferroelectric, and relaxor phases coexist. As the electric field is large enough, a reversible phase transition occurs. Furthermore, good temperature stability was obtained due to the stability of the nanodomains, and no degradation in strains was observed even after 104 cycles, which may originate from the reversible phase transition and dynamic domain wall. The results show that this design strategy offers a reference way to improve the strain behaviour and that BNKT-4ST-100xNb ceramics could be a potential material for high-displacement actuator applications.  相似文献   
4.
5.
While creativity is essential for developing students’ broad expertise in Science, Technology, Engineering, and Math (STEM) fields, many students struggle with various aspects of being creative. Digital technologies have the unique opportunity to support the creative process by (1) recognizing elements of students’ creativity, such as when creativity is lacking (modeling step), and (2) providing tailored scaffolding based on that information (intervention step). However, to date little work exists on either of these aspects. Here, we focus on the modeling step. Specifically, we explore the utility of various sensing devices, including an eye tracker, a skin conductance bracelet, and an EEG sensor, for modeling creativity during an educational activity, namely geometry proof generation. We found reliable differences in sensor features characterizing low vs. high creativity students. We then applied machine learning to build classifiers that achieved good accuracy in distinguishing these two student groups, providing evidence that sensor features are valuable for modeling creativity.  相似文献   
6.
Train driving is a highly visual task. The visual capabilities of the train driver affects driving safety and driving performance. Understanding the effects of train speed and background image complexity on the visual behavior of the high-speed train driver is essential for optimizing performance and safety. This study investigated the role of the apparent image velocity and complexity on the dynamic visual field of drivers. Participants in a repeated-measures experiment drove a train at nine different speeds in a state-of-the-art high-speed train simulator. Eye movement analysis indicated that the effect of image velocity on the dynamic visual field of high-speed train driver was significant while image complexity had no effect on it. The fixation range was increasingly concentrated on the middle of the track as the speed increased, meanwhile there was a logarithmic decline in fixation range for areas surrounding the track. The extent of the visual search field decreased gradually, both vertically and horizontally, as the speed of train increased, and the rate of decrease was more rapid in the vertical direction. A model is proposed that predicts the extent of this tunnel vision phenomenon as a function of the train speed.Relevance to industryThis finding can be used as a basis for the design of high-speed railway system and as a foundation for improving the operational procedures of high-speed train driver for safety.  相似文献   
7.
With superior properties of Mg such as high hydrogen storage capacity (7.6 wt% H/MgH2), low price, and low density, Mg has been widely studied as a promising candidate for solid-state hydrogen storage systems. However, a harsh activation procedure, slow hydrogenation/dehydrogenation process, and a high temperature for dehydrogenation prevent the use of Mg-based metal hydrides for practical applications. For these reasons, Mg-based alloys for hydrogen storage systems are generally alloyed with other elements to improve hydrogen sorption properties. In this article, we have added Na to cast Mg–La alloys and achieved a significant improvement in hydrogen absorption kinetics during the first activation cycle. The role of Na in Mg–La has been discussed based on the findings from microstructural observations, crystallography, and first principles calculations based on density functional theory. From our results in this study, we have found that the Na doped surface of Mg–La alloy systems have a lower adsorption energy for H2 compared to Na-free surfaces which facilitates adsorption and dissociation of hydrogen molecules leading to improvement of absorption kinetic. The effect of Na on the microstructure of these alloys, such as eutectic refinement and a density of twins is not highly correlated with absorption kinetics.  相似文献   
8.
9.
In this work, the hydrothermally-synthesized sodium niobate nanowires were used to decompose Rhodamine B dye solution through the piezo-catalytic effect. With the sodium niobate catalyst, a high piezo-catalytic degradation ratio of ~80% was achieved under the excitation of vibration for the Rhodamine B dye solution (~5?mg/l). These active species in the catalytic process, hydroxyl radicals and superoxide radicals with the strong oxidation ability, were also observed, which confirmed the key role of piezoelectric effect for piezo-catalysis. The piezo-catalysis of sodium niobate nanowires provides a high-efficiency and reusable tool in application in depredating the dye wastewater.  相似文献   
10.
Preference for saltiness is learned by oral exposure to salt taste; however, some data suggest a role for bodily sodium and potassium levels on salt taste preferences as well. The objective was to investigate whether encapsulated sodium and potassium supplementation lead to altered salt taste responses among adults with high blood pressure on a low sodium and low potassium diet. Twenty-six participants with untreated upper-range prehypertension or stage 1 hypertension were on a fully controlled low sodium and low potassium diet (both targeted at 2 g/day) for 13 weeks. Participants received capsules with sodium (3 g/d), potassium (3 g/d), or placebo, for 4 weeks each, in randomized order in a double blind crossover design. Sensory evaluation was done before and after each supplementation period and involved ratings of pleasantness and intensity in different salt (NaCl) concentrations in food and water, desire-to-eat salty food, and detection threshold for NaCl. Neither sodium supplementation nor potassium supplementation led to alterations in salt taste responses in food and water, and did not affect detection threshold (P = 0.59). There was no clear role for sodium or potassium supplementation on desire-to-eat salty food. In addition, we did not find effects of reduced oral exposure to salt over weeks, through the sodium-reduced diet, on salt taste preferences, in contrast to earlier studies. In conclusion, the results of this study suggest preference for saltiness is independent of changes in bodily sodium or potassium levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号