首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33017篇
  免费   2980篇
  国内免费   2181篇
电工技术   2145篇
综合类   4041篇
化学工业   3132篇
金属工艺   3931篇
机械仪表   1899篇
建筑科学   2571篇
矿业工程   832篇
能源动力   1195篇
轻工业   2123篇
水利工程   1321篇
石油天然气   1079篇
武器工业   321篇
无线电   2563篇
一般工业技术   4467篇
冶金工业   2079篇
原子能技术   334篇
自动化技术   4145篇
  2024年   96篇
  2023年   497篇
  2022年   638篇
  2021年   861篇
  2020年   930篇
  2019年   833篇
  2018年   739篇
  2017年   942篇
  2016年   951篇
  2015年   1003篇
  2014年   1571篇
  2013年   1805篇
  2012年   1979篇
  2011年   2203篇
  2010年   1737篇
  2009年   1861篇
  2008年   1761篇
  2007年   2145篇
  2006年   2150篇
  2005年   1764篇
  2004年   1730篇
  2003年   1547篇
  2002年   1321篇
  2001年   1140篇
  2000年   1001篇
  1999年   837篇
  1998年   648篇
  1997年   587篇
  1996年   483篇
  1995年   381篇
  1994年   314篇
  1993年   300篇
  1992年   276篇
  1991年   219篇
  1990年   252篇
  1989年   196篇
  1988年   135篇
  1987年   67篇
  1986年   50篇
  1985年   40篇
  1984年   37篇
  1983年   17篇
  1982年   24篇
  1981年   32篇
  1980年   11篇
  1979年   11篇
  1978年   7篇
  1977年   7篇
  1973年   6篇
  1968年   6篇
排序方式: 共有10000条查询结果,搜索用时 184 毫秒
1.
2.
《Ceramics International》2021,47(21):30349-30357
Mesoporous glass 58S (60SiO2, 36CaO, 4P2O5 mol.%) has excellent bioactivity, biocompatibility, and forms strong bonds with bone making it attractive for implants. Mesoporous bioactive glass 58S powder is typically consolidated through sintering in order to produce an implant with sufficient strength to withstand the in vivo loads. However, heating the glass often leads to crystallinity, which is undesirable because it can reduce bioactivity. Hence, there is a trade-off between minimising crystallinity and maximising glass strength. Even at relatively low temperatures, it has been suggested that segregation of calcium and phosphate from silica within the glass can lead to crystallization. In this work, we confirm the occurrence of low temperature segregation in bioactive glass 58S using electron microscopy with elemental mapping. We probe how segregation affects the material properties of post-sintered glasses via comparison to a glass where phase separation is prevented via addition citric acid to the parent sol.  相似文献   
3.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
4.
Sr0.9La0.1TiO3 based textured ceramics (SLTT-S3T) with a texture fraction of 0.81 are successfully fabricated by the reactive template grain growth method, in which Sr0.9La0.1TiO3/20 wt%Ti was used as matrix and 10 wt% plate-like Sr3Ti2O7 template seeds were used as templates. The phase transition, microstructure evolution, and the anisotropic thermoelectric properties of SLTT-S3T ceramics were investigated. The results show that the ceramics are mainly composed of Sr0.9La0.1TiO3 and rutile TiO2 phases. Grains grow with a preferred orientation along (h00). A maximum ZT of 0.26 at 1073 K was achieved in the direction perpendicular to the tape casting direction. The low lattice thermal conductivity of 1.9 W/(m K) at 1073 K was obtained decreased by 34%, 40%, and 38% compared with non-textured, SrTiO3 and Sr0.9La0.1TiO3 ceramics prepared by the same process, can be attributed to the enhanced phonon scattering by the complex multi-scale boundaries and interfaces. This work provides a strategy of microstructural design for thermoelectric oxides to decrease intrinsic lattice thermal conductivity and further regulate thermoelectric properties via texture engineering.  相似文献   
5.
《Ceramics International》2022,48(11):15056-15063
Hydrogen (H2) sensors based on metal oxide semiconductors (MOS) are promising for many applications such as a rocket propellant, industrial gas and the safety of storage. However, poor selectivity at low analyte concentrations, and independent response on high humidity limit the practical applications. Herein, we designed rGO-wrapped SnO2–Pd porous hollow spheres composite (SnO2–Pd@rGO) for high performance H2 sensor. The porous hollow structure was from the carbon sphere template. The rGO wrapping was via self-assembly of GO on SnO2-based spheres with subsequent thermal reduction in H2 ambient. This sensor exhibited excellently selective H2 sensing performances at 390 °C, linear response over a broad concentration range (0.1–1000 ppm) with recovery time of only 3 s, a high response of ~8 to 0.1 ppm H2 in a minute, and acceptable stability under high humidity conditions (e. g. 80%). The calculated detection limit of 16.5 ppb opened up the possibility of trace H2 monitoring. Furthermore, this sensor demonstrated certain response to H2 at the minimum concentration of 50 ppm at 130 °C. These performances mainly benefited from the special hollow porous structure with abundant heterojunctions, the catalysis of the doped-PdOx, the relative hydrophobic surface from rGO, and the deoxygenation after H2 reduction.  相似文献   
6.
为了建立适用于书画打印宣纸印刷质量的预测模型,本研究测量了14种书画打印宣纸的粗糙度、白度、不透明度、定量、光泽度和针对宣纸特别设定的帘纹深浅以及帘纹疏密度等表面物理参量,并在相同条件下,使用喷墨打印设备输出并测量印品色度值,利用总变差模型构建去除帘纹色差的测定方法,得到与人眼视觉特征相符的色差。运用GRNN广义回归神经网络结合书画打印宣纸表面物理参量与宣纸去帘纹后的色差值,建立预测模型。结果表明,该模型能够在仅测量书画打印宣纸表面物理参量的情况下,便能较为准确地预测书画打印宣纸印刷质量,为书画打印宣纸印刷前的选纸工作提供指导依据。  相似文献   
7.
Prostephanus truncatus is a notorious pest of stored-maize grain and its spread throughout sub-Saharan Africa has led to increased levels of grain storage losses. The current study developed models to predict the level of P. truncatus infestation and associated damage of maize grain in smallholder farmer stores. Data were gathered from grain storage trials conducted in Hwedza and Mbire districts of Zimbabwe and correlated with weather data for each site. Insect counts of P. truncatus and other common stored grain insect pests had a strong correlation with time of year with highest recorded numbers from January to May. Correlation analysis showed insect-generated grain dust from boring and feeding activity to be the best indicator of P. truncatus presence in stores (r = 0.70), while a moderate correlation (r = 0.48) was found between P. truncatus numbers and storage insect parasitic wasps, and grain damage levels significantly correlated with the presence of Tribolium castaneum (r = 0.60). Models were developed for predicting P. truncatus infestation and grain damage using parameter selection algorithms and decision-tree machine learning algorithms with 10-fold cross-validation. The P. truncatus population size prediction model performance was weak (r = 0.43) due to the complicated sampling and detection of the pest and eight-week long period between sampling events. The grain damage prediction model had a stronger correlation coefficient (r = 0.93) and is a good estimator for in situ stored grain insect damage. The models were developed for use under southern African climatic conditions and can be improved with more input data to create more precise models for building decision-support tools for smallholder maize-based production systems.  相似文献   
8.
《Advanced Powder Technology》2020,31(12):4598-4618
Simulation based on discrete element method (DEM) coupled with computational fluid dynamics (CFD), coupled DEM-CFD, is a powerful tool for investigating the details of dense particle–fluid interaction problems such as in fluidized beds and pneumatic conveyers. The addition of a mechanical vibration to a system can drastically alter the particle and fluid flows; however, their detailed mechanisms are not well understood. In this study, a DEM-CFD model based on a non-inertial frame of reference is developed to achieve a better understanding of the influence of vibration in a vibrated fluidized bed. Because the high computational cost of DEM-CFD calculations is still a major problem, an upscaled coarse-graining model is also employed. To realize similar behaviors with enlarged model particles, non-dimensional parameters at the particle scale were deduced from the governing equations. The suitability and limitations of the proposed model were examined for a density segregation problem of a binary system. To reduce the computational costs, we show that the ratio between the bed width and model particle size can be reduced to a minimum value of 100; to obtain similar segregation behaviors, the ratio between the bed height and model particle size is considered unchanged.  相似文献   
9.
Lead-free (K0.5Na0.5)NbO3-based (KNN) piezoceramics featuring a polymorphic phase boundary (PPB) between the orthorhombic and tetragonal phases at room temperature are reported to possess high piezoelectric properties but with inferior cycling stability, while the ceramics with a single tetragonal phase show improved cycling stability but with lower piezoelectric coefficients. In this work, electric biasing in-situ transmission electron microscopy (TEM) study is conducted on two KNN-based compositions, which are respectively at and off PPB. Our observations reveal the distinctive domain responses in these two ceramics under cyclic fields. The higher domain wall density in the poled KNN at PPB contributes to the high piezoelectric properties. Upon cycling, however, a new microstructure feature, “domain intersection”, is directly observed in this PPB composition. In comparison, the off-PPB KNN ceramic develops large domains during poling, which experience much less extent of disruption during cycling. Our comparative study provides the basis for understanding the relation between phase composition and piezoelectric performance.  相似文献   
10.
This paper presents robust and adaptive boundary control designs to stabilize the two‐dimensional vibration of hybrid shaft model. The hybrid shaft is mathematically represented by a set of partial differential equations, governing the shaft vibrations, coupled to ordinary differential equations, describing rigid body spinning and dynamic boundary conditions. The control objective is to stabilize the transverse vibrations of the perturbed shaft while regulating the spinning rate. To achieve this, the paper first establishes robust boundary control laws that fulfil the control objective in the presence of modeling uncertainties and external disturbances operating over the shaft domain and boundary. Lyapunov‐based analyses show that the proposed robust control exponentially stabilizes the shaft with vanishing distributive perturbations, while assuring ultimately bounded vibrations in the case of nonvanishing perturbations. Then, adaptive control philosophy is utilized to achieve redesigned robust controllers that only use online adaptation of control gains without acquiring the knowledge of bounds on perturbations, as well as dynamic parameters. An advantage of this design is avoiding an overconservative robust control law, which may induce poor stability and chattering in tackling system perturbations with unknown upper bounds. Simulations through finite element method illustrate the results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号