首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   0篇
  国内免费   10篇
化学工业   15篇
金属工艺   12篇
机械仪表   2篇
矿业工程   1篇
无线电   50篇
一般工业技术   26篇
冶金工业   1篇
原子能技术   2篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2013年   5篇
  2012年   3篇
  2011年   10篇
  2010年   9篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   9篇
  2002年   2篇
  2001年   1篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1982年   1篇
排序方式: 共有110条查询结果,搜索用时 281 毫秒
1.
Supported metal catalysts, particularly noble metals supported on SiO2, have attracted considerable attention due to the importance of the silica–metal interface in heterogeneous catalysis and in electronic device fabrication. Several important issues, e.g., the stability of the metal–oxide interface at working temperatures and pressures, are not well-understood. In this review, the present status of our understanding of the metal–silica interface is reviewed. Recent results of model studies in our laboratories on Pd/SiO2/Mo(1 1 2) using LEED, AES and STM are reported. In this work, epitaxial, ultrathin, well-ordered SiO2 films were grown on a Mo(1 1 2) substrate to circumvent complications that frequently arise from the silica–silicon interface present in silica thin films grown on silicon.  相似文献   
2.
A self-assembly patterning method for generation of epitaxial CoSi2 nanostructures was used to fabricate 50 nm channel-length MOSFETs. The transistors have either a symmetric structure with Schottky source and drain or an asymmetric structure with n+-source and Schottky drain. The patterning technique is based on anisotropic diffusion of Co/Si atoms in a strain field during rapid thermal oxidation. The strain field is generated along the edges of a mask consisting of 20 nm SiO2 and 300 nm Si3N4. During rapid thermal oxinitridation (RTON) of the masked silicide structure, a well-defined separation of the silicide layer forms along the edge of the mask. These highly uniform gaps define the channel region of the fabricated device. The separated silicide layers act as metal source and drain. A poly-Si spacer was used as the gate contact. The asymmetric transistor was fabricated by ion implantation into the unprotected CoSi2 layer and a subsequent out-diffusion process to form the n+-source. I–V characteristics of both the symmetric and asymmetric transistor structures have been investigated.  相似文献   
3.
MoSi2-based intermetallics containing different volume fractions of MoB or Mo5Si3 were fabricated by hot-pressing MoSi2, MoB, and Mo5Si3 powders in vacuum. Both classes of alloys contained approximately 5 vol.% of dispersed silica phase. Additions of MoB or Mo5Si3 caused the average grain size to decrease. The decrease in the grain size was typically accompanied by an increase in flexure strength, a decrease in the room temperature fracture toughness, and a decrease in the hot strength (compressive creep strength) measured around 1200 °C, except when the Mo5Si3 effectively became the major phase. Oxidation measurements on the two classes of alloys were carried out in air. Both classes of alloys were protected from oxidation by an in-situ adherent scale that formed on exposure to high temperature. The scale, although not analyzed in detail, is commonly recognized in MoSi2 containing materials as consisting mostly of SiO2. The MoB containing materials showed an increase in the scale thickness and the cyclic oxidation rate at 1400 °C when compared with pure MoSi2. However, in contrast with the pure MoSi2 material, oxidation at 1400 °C began with a weight loss followed by a weight gain and the formation of the protective silica layer. The Mo5Si3 containing materials experienced substantial initial weight losses followed by regions of small weight changes. Overall, the MoB and Mo5Si3 additions to MoSi2 tended to be detrimental for the mechanical and oxidative properties.  相似文献   
4.
A silicide coating was prepared on Ti3SiC2-based ceramic by pack cementation to improve the oxidation resistance of Ti3SiC2, which is a technologically important material for high temperature applications. The microstructure, phase composition and oxidation resistance of the coated sample were investigated. The results demonstrated that the silicide coating was mainly composed of TiSi2 and SiC. A single layer of a mixture of SiO2 and TiO2 was formed on the surface of the coated sample during isothermal oxidation at 1100 °C and 1200 °C for 20h. Compared to Ti3SiC2, the parabolic rate constant of silicide coated Ti3SiC2 decreased by 2~3 orders of magnitude. Furthermore, the coated sample showed much better cyclic oxidation resistance than Ti3SiC2 during the cyclic oxidation at 1100 °C for 400 times. However, during the preparation of the coating, a number of fine cracks formed in the outer layer of the coating. When these cracks penetrated the whole coating during the cyclic oxidation, the oxidation rate was accelerated, which degraded the oxidation resistance. Electronic Publication  相似文献   
5.
Abstract— We studied the silicide‐mediated crystallization of a‐Si for low‐temperature polycrystalline‐silicon (LTPS) on glass. By controling the heating method and Ni density on the a‐Si, the grain size could be increased to 40 μm. Radial grain growth from a NiSi2 crystalline nucleus gives rise to a large‐grain poly‐Si without amorphous phase inside. A field‐effect mobility of over 200 cm2/V‐sec was achieved by using LTPS.  相似文献   
6.
The epitaxial growth process of β-FeSi2 on Si(100) surface under ultrahigh vacuum condition has been studied by low energy electron diffraction (LEED) and low energy ion scattering spectroscopy (LEIS). The LEED pattern of Si (100)-2×1 changes into amorphous structure with Fe deposition of about 10 Å at room temperature. With annealing at 540 °C, the LEED pattern shows 2×2 structure corresponding to the formation of the epitaxial β-FeSi2 (100) template layer. The α-scan in Li+-LEIS and X-ray diffraction (XRD) study strongly suggest that the topmost surface of the 2×2 structure is terminated by Si atoms. By XRD, it is shown that the β-FeSi2 develops with characteristic orientation even if iron reactant is deposited onto the template surface.  相似文献   
7.
In order to solve the challenge of recyclability of tantalum substrates in high temperature oxidation environments, a novel MoSi2-WSi2-HfSi2-TiSi2 composite ceramic coating containing an Nb interlayer was prepared on the surface of tantalum substrate by a three-step method. The mix ceramic silicide coating exhibited superior performance and effective protection for 10.2 h at 1800 °C, possibly due to the formation of an outer SiO2-HfO2-HfSiO4 composite oxide film with low oxygen permeability, moderate viscosity and thermal expansion coefficient, as well as good self-healing ability. Furthermore, the coating successfully passed 537 thermal cycles from room temperature to 1800 °C. The presence of Nb interlayer significantly mitigated the thermal mismatch between the ceramic coating and the tantalum substrate, and the bidirectional diffusion of Nb element during the high temperature oxidation and thermal shock process further reduced the tendency of the coating to crack.  相似文献   
8.
Hot Wire Chemical Vapor Deposition (HW-CVD) is one of the most promising techniques for depositing the intrinsic microcrystalline silicon layer for the production of micro-morph solar cells. However, the silicide formation at the colder ends of the tungsten wire drastically reduces the lifetime of the catalyzer, thus limiting its industrial exploitation. A simple but interesting strategy to decrease the silicide formation is to hide the electrical contacts of the catalyzer in a long narrow cavity which reduces the probability of the silane molecules to reach the colder ends of the wire. In this paper, the working mechanism of the cavity is elucidated. Measurements of the thickness profile of the silicon deposited in the internal walls of the cavity have been compared with those predicted using a simple diffusion model based on the assumption of Knudsen flow. A lifetime study of the protected and unprotected wires has been carried out. The different mechanisms which determine the deterioration of the catalyzer have been identified and discussed.  相似文献   
9.
钼离子注入硅薄层硅化钼的合成   总被引:1,自引:0,他引:1  
张通和  吴瑜光 《核技术》2000,23(9):599-603
用大束流密度的钼金属离子注入硅,能够直接合成性能良好的薄层硅化物。随着束流密度的增加,硅化钼生长,薄层硅化物的方块电阻Rs明显下降,当束流密度为0.5A/m^2时,Rs达到上值90Ω,说明连续的硅化物已经形成。X衍射分析结果表明,注入层中形成了3种硅化钼Mo3Si、Mo5Si3和MoSi2。经过900℃退火后,Rs下降至4Ω,电阻率可小到0.16μΩ.m,说明硅化钼薄层质量得到了进一步的改善。大束  相似文献   
10.
于宗光 《微电子学》1990,20(3):13-20
本文综述了化学汽相淀积耐熔金属及其硅化物研究方面的最新进展,并对它们进行了讨论。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号