首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108507篇
  免费   10071篇
  国内免费   5822篇
电工技术   6282篇
技术理论   1篇
综合类   9594篇
化学工业   18583篇
金属工艺   11782篇
机械仪表   5943篇
建筑科学   15715篇
矿业工程   3680篇
能源动力   4929篇
轻工业   6444篇
水利工程   3295篇
石油天然气   4816篇
武器工业   926篇
无线电   6729篇
一般工业技术   12585篇
冶金工业   7374篇
原子能技术   1474篇
自动化技术   4248篇
  2024年   265篇
  2023年   1452篇
  2022年   2779篇
  2021年   3450篇
  2020年   3475篇
  2019年   3069篇
  2018年   2893篇
  2017年   3802篇
  2016年   4023篇
  2015年   4115篇
  2014年   6387篇
  2013年   6810篇
  2012年   7930篇
  2011年   8393篇
  2010年   6018篇
  2009年   6273篇
  2008年   5611篇
  2007年   7061篇
  2006年   6487篇
  2005年   5395篇
  2004年   4702篇
  2003年   4013篇
  2002年   3378篇
  2001年   2980篇
  2000年   2474篇
  1999年   2043篇
  1998年   1642篇
  1997年   1368篇
  1996年   1188篇
  1995年   971篇
  1994年   829篇
  1993年   617篇
  1992年   540篇
  1991年   428篇
  1990年   352篇
  1989年   257篇
  1988年   181篇
  1987年   132篇
  1986年   96篇
  1985年   91篇
  1984年   89篇
  1983年   62篇
  1982年   53篇
  1981年   47篇
  1980年   49篇
  1979年   42篇
  1977年   10篇
  1975年   12篇
  1959年   14篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e. allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens. The present study evaluates the feasibility of microbially induced calcium carbonate precipitation (MICP) technique to mitigate wind-induced erosion of calcareous desert sand (Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36 °C to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina (S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing (in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure (including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope (SEM), and energy-dispersive X-ray spectroscope (EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in 15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust, bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand.  相似文献   
2.
A ring-on-ring (ROR) test is a prevailing test method for evaluating the equi-biaxial strength of glass materials. However, current ROR test standards limit the strength and size of glass to prevent a nonlinear behavior. In this study, the feasibility of ROR testing for non-standard, high-strength glass, such as tempered or ion-exchanged rectangular glass is investigated. To this end, ROR simulation based on theory and experiment is conducted for thirty non-standard glasses with widths of 100–300 mm and aspect ratios of 1.0–2.0. As a result, the maximum measurable stress was about 215.6 MPa for 100 × 200 mm glass and 481.3 MPa for 300 × 600 mm glass with a 3% deviation, which is well above the strength of regular tempered glass. The main purpose of this work is to understand the range of aspect ratio of horizontal and vertical widths of a glass plate that can be evaluated by the standard ROR test.  相似文献   
3.
Engineering new glass compositions have experienced a sturdy tendency to move forward from (educated) trial-and-error to data- and simulation-driven strategies. In this work, we developed a computer program that combines data-driven predictive models (in this case, neural networks) with a genetic algorithm to design glass compositions with desired combinations of properties. First, we induced predictive models for the glass transition temperature (Tg) using a dataset of 45,302 compositions with 39 different chemical elements, and for the refractive index (nd) using a dataset of 41,225 compositions with 38 different chemical elements. Then, we searched for relevant glass compositions using a genetic algorithm informed by a design trend of glasses having high nd (1.7 or more) and low Tg (500 °C or less). Two candidate compositions suggested by the combined algorithms were selected and produced in the laboratory. These compositions are significantly different from those in the datasets used to induce the predictive models, showing that the used method is indeed capable of exploration. Both glasses met the constraints of the work, which supports the proposed framework. Therefore, this new tool can be immediately used for accelerating the design of new glasses. These results are a stepping stone in the pathway of machine learning-guided design of novel glasses.  相似文献   
4.
《Ceramics International》2022,48(12):16730-16736
Recently, all-inorganic cesium lead-halide perovskites have shown their promise for light emission applications, due to the excellent optical performance. Herein, we report that the initially nonphosphorescent undoped lead-halide Cs4PbBr6 single crystals (SCs) exhibit an ultralong phosphorescence emission under X-ray excitation at low temperatures. It is shown that the dramatic change has been taken place in radioluminescence spectra and the broad-band emission gradually appeared with the decrease of temperature. Below 210 K, the radioluminescence spectra can be deconvoluted into one narrow peak located at 530 nm and two broad peaks centered at 595 nm and 672 nm respectively. Subsequently, the time-dependent radioluminescence spectra in undoped lead-halide Cs4PbBr6 SCs were investigated. The ultralong phosphorescence emission can persist over 120 min at 70 K. We consider that ultralong phosphorescence originates from defect-related emission. To the best of our knowledge, our finding is the first time that undoped Cs4PbBr6 SCs exhibit the phosphorescence emission, which will offer a paradigm to motivate revolutionary applications on perovskite.  相似文献   
5.
To provide a basis for the high-temperature oxidation of ultra-high temperature ceramics (UHTCs), the oxidation behavior of Zr3[Al(Si)]4C6 and a novel Zr3[Al(Si)]4C6-ZrB2-SiC composite at 1500 °C were investigated for the first time. From the calculation results, the oxidation kinetics of the two specimens follow the oxidation dynamic parabolic law. Zr3[Al(Si)]4C6 exhibited a thinner oxide scale and lower oxidation rate than those of the composite under the same conditions. The oxide scale of Zr3[Al(Si)]4C6 exhibited a two-layer structure, while that of the composite exhibited a three-layer structure. Owing to the volatilization of B2O3 and the active oxidation of SiC, a porous oxide layer formed in the oxide scale of the composite, resulting in the degradation of its oxidation performance. Furthermore, the cracks and defects in the oxide scale of the composite indicate that the reliability of the oxide scale was poor. The results support the service temperature of the obtained ceramics.  相似文献   
6.
Yarn-dyed fabric is often woven from warp and weft yarns in the same color depth to ensure a uniform color appearance. The difference in color depth between warp and weft tends to result in the uneven color of the yarn-dyed fabric. This article aims to establish a color tolerance for yarn-dyed fabric that can be woven with a qualified color appearance but from the warp and weft yarns in different color depths. A total of 27 yarn-dyed fabric samples in three color series (red, yellow, and blue) were evaluated by using the yarn-dyed fabric from warp and weft yarns in the same color depth of 2% (on weight of fabric, owf) as the standard. Visual assessment and instrumental measurement of color were carried out to establish the color tolerance ellipse that was defined as CMC (Color Measurement Committee) color differences (2:1) of no more than 1.00. It was found that the color strengths (K/S) and color differences (ΔECMC(2:1)) of these fabric samples for each color series had linear relationships with the color depths of warp and weft yarns. The color tolerance ellipses indicated that, even though the warp and weft yarns had an apparent color difference, they could be woven in fabrics with relatively uniform color appearance and meet the requirements for yarn-dyed fabric. This work provided valuable insight into the production of qualified yarn-dyed fabrics from unqualified dyed yarns.  相似文献   
7.
为解决电镀砂轮磨削加工中容屑空间不足的问题,采用点胶微粘接的方法制备了磨料有序排布的电镀砂轮,分析了磨料粘接效果和镀层力学性能。通过SEM分析了磨料/镀层/导电胶的结合界面,并进行了干磨削试验。研究结果表明,直径约为磨料粒径40%的胶点可粘接住磨料,单个胶点上粘接多颗磨料的占比小于6%;双脉冲电镀工艺制备的镀层显微硬度大于500HV,表层残余应力小于100MPa,磨料/镀层/导电胶之间的界面贴合紧密,无明显缺陷;砂轮在磨削时没有出现磨料脱落现象。  相似文献   
8.
《Ceramics International》2021,47(19):27217-27229
Herein, an in-depth analysis of the effect of heat treatment at temperatures between 900 and 1500 °C under an Ar atmosphere on the structure as well as strength of Cansas-II SiC fibres was presented. The untreated fibres are composed of β-SiC grains, free carbon layers, as well as a small amount of an amorphous SiCxOy phase. As the heat-treatment temperature was increased to 1400 °C, a significant growth of the β-SiC grains and free carbon layers occurred along with the decomposition of the SiCxOy phase. Moreover, owing to the decomposition of the SiCxOy phase, some nanopores formed on the fibre surface upon heating at 1500 °C. The mean strength of the Cansas-II fibres decreased progressively from 2.78 to 1.20 GPa with an increase in the heat-treatment temperature. The degradation of the fibre strength can be attributed to the growth of critical defects, β-SiC grains, as well as the residual tensile stress.  相似文献   
9.
Dielectric capacitors with decent energy storage and fast charge-discharge performances are essential in advanced pulsed power systems. In this study, novel ceramics (1-x)NaNbO3-xBi(Ni2/3Nb1/3)O3(xBNN, x = 0.05, 0.1, 0.15 and 0.20) with high energy storage capability, large power density and ultrafast discharge speed were designed and prepared. The impedance analysis proves that the introducing an appropriate amount of Bi(Ni0·5Nb0.5)O3 boosts the insulation ability, thus obtaining a high breakdown strength (Eb) of 440 kV/cm in xBNN ceramics. A high energy storage density (Wtotal) of 4.09 J/cm3, recoverable energy storage density (Wrec) of 3.31 J/cm3, and efficiency (η) of 80.9% were attained in the 0.15BNN ceramics. Furthermore, frequency and temperature stability (fluctuations of Wrec ≤ 0.4% over 5–100 Hz and Wrec ≤ 12.3% over 20–120 °C) were also observed. The 0.15BNN ceramics exhibited a large power density (19 MW/cm3) and ultrafast discharge time (~37 ns) over the range of ambient temperature to 120 °C. These enhanced performances may be attributed to the improved breakdown strength and relaxor behavior through the incorporation of BNN. In conclusion, these findings indicate that 0.15BNN ceramics may serve as promising materials for pulsed power systems.  相似文献   
10.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号