首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11202篇
  免费   1071篇
  国内免费   569篇
电工技术   191篇
技术理论   1篇
综合类   918篇
化学工业   1441篇
金属工艺   123篇
机械仪表   215篇
建筑科学   746篇
矿业工程   204篇
能源动力   551篇
轻工业   673篇
水利工程   169篇
石油天然气   561篇
武器工业   43篇
无线电   1528篇
一般工业技术   1145篇
冶金工业   1364篇
原子能技术   65篇
自动化技术   2904篇
  2024年   56篇
  2023年   199篇
  2022年   293篇
  2021年   481篇
  2020年   501篇
  2019年   333篇
  2018年   310篇
  2017年   389篇
  2016年   448篇
  2015年   390篇
  2014年   615篇
  2013年   745篇
  2012年   663篇
  2011年   770篇
  2010年   645篇
  2009年   712篇
  2008年   607篇
  2007年   683篇
  2006年   644篇
  2005年   550篇
  2004年   441篇
  2003年   442篇
  2002年   333篇
  2001年   306篇
  2000年   174篇
  1999年   172篇
  1998年   138篇
  1997年   96篇
  1996年   95篇
  1995年   76篇
  1994年   68篇
  1993年   48篇
  1992年   33篇
  1991年   23篇
  1990年   20篇
  1989年   29篇
  1988年   26篇
  1987年   11篇
  1986年   14篇
  1985年   21篇
  1984年   16篇
  1983年   11篇
  1964年   22篇
  1963年   20篇
  1961年   14篇
  1960年   16篇
  1959年   13篇
  1958年   11篇
  1957年   15篇
  1955年   18篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
In this article, pre-assembly hot-press pressure and thermal expansion effects in gas-diffusion layers (GDLs) are addressed to explore the practicalities of the constitutive model reported in the companion article. A facile technique is proposed to include deformation history dependent residual strain effects. The model is implemented in the numerical environment and compared with widely followed conventional models such as isotropic and orthotropic material models. With the normal and accelerated thermal expansion effects no significant variation in stresses or strains is reported with the compressible GDL model in contrast to the conventional incompressible form of the GDL model. The present work identifies the critical differences with advanced and extended variants of the model along with conventional GDL material models in terms of planar stress/strain distribution and the membrane response. Finally, the model is simulated for micro-cyclic stress loads of varying amplitudes that imitate the real working conditions of fuel cell. The inelastic energy dissipation in GDLs is predicted using the proposed model, which is utilized further to distinguish the safe (elastic) and unsafe (inelastic shakedown) operating limits. The inelastic collapse of GDLs is shown to be a active function of high amplitude micro-cyclic load with high initial clamping load.  相似文献   
2.
开展智慧化阅读推广,紧跟时代步伐,有效提升读者多重阅读体验和满意度,增强智慧化阅读推广的价值,促进智慧化阅读推广服务的有效化、规范化、科学化、常态化、长期化发展,已成为当前阅读推广研究中一个重要的切入点。文章基于智慧化阅读研究,结合"新媒体"高新技术环境,提出智慧化阅读推广的内容分析、具体实施、环境构建、推广评估与效果、推广改进等几个方面组成的以读者为中心的核心服务体系。本文分析了智慧化阅读基本方面,以我校图书馆实际运用推广效果,智慧化阅读存在的优、劣势及相应的对策。  相似文献   
3.
4.
The effect of the emergency perception of bystanders of cyberbullying victims on helping behaviors is often neglected in research on cyberbullying. In this study, we explored the influence of this cognitive factor on cyber-bystanders’ helping tendencies as well as elucidated possible underlying processes. The results of two studies were reported. In Study 1, 150 undergraduates read a true case of a girl experiencing cyberbullying. The results indicated that when the participants perceived the victim’s situation to be more critical (i.e., higher emergency perception), their helping tendencies were stronger, partly through increased state empathy followed by feelings of responsibility to help. In Study 2, we randomly assigned 300 undergraduates to two groups. The low emergency group read the same cyberbullying case as Study 1, whereas the cyberbullying case read by the high emergency group contained additional emergency information of the victim. The results indicated that the high emergency group expressed stronger helping tendencies than did the low emergency group. This effect was caused by a stronger perception that the victim was in an emergency situation, which not only strengthened the participants’ helping tendencies directly but also indirectly through increasing their state empathy and feelings of responsibility to help.  相似文献   
5.
Chemical engineering systems often involve a functional porous medium, such as in catalyzed reactive flows, fluid purifiers, and chromatographic separations. Ideally, the flow rates throughout the porous medium are uniform, and all portions of the medium contribute efficiently to its function. The permeability is a property of a porous medium that depends on pore geometry and relates flow rate to pressure drop. Additive manufacturing techniques raise the possibilities that permeability can be arbitrarily specified in three dimensions, and that a broader range of permeabilities can be achieved than by traditional manufacturing methods. Using numerical optimization methods, we show that designs with spatially varying permeability can achieve greater flow uniformity than designs with uniform permeability. We consider geometries involving hemispherical regions that distribute flow, as in many glass chromatography columns. By several measures, significant improvements in flow uniformity can be obtained by modifying permeability only near the inlet and outlet.  相似文献   
6.
We considered the magnetohydrodynamic (MHD) free convective flow of an incompressible electrically conducting viscous fluid past an infinite vertical permeable porous plate with a uniform transverse magnetic field, heat source and chemical reaction in a rotating frame taking Hall current effects into account. The momentum equations for the fluid flow during absorbent medium are controlled by the Brinkman model. Through the undisturbed state, both the plate and fluid are in a rigid body rotation by the uniform angular velocity perpendicular to an infinite vertical plate. The perpendicular surface is subject to the homogeneous invariable suction at a right angle to it and the heat on the surface varies about a non-zero unvarying average whereas the warmth of complimentary flow is invariable. The systematic solutions of the velocity, temperature, and concentration distributions are acquired systematically by utilizing the perturbation method. The velocity expressions consist of steady-state and fluctuating situations. It is revealed that the steady part of the velocity field has a three-layer characteristic while the oscillatory part of the fluid field exhibits a multi-layer characteristic. The influence of various governing flow parameters on the velocity, temperature, and concentration are analyzed graphically. We also discuss computational results for the skin friction, Nusselt number, and Sherwood number in the tabular forms.  相似文献   
7.
In recent years, artificial intelligence (AI) is being increasingly utilised in disaster management activities. The public is engaged with AI in various ways in these activities. For instance, crowdsourcing applications developed for disaster management to handle the tasks of collecting data through social media platforms, and increasing disaster awareness through serious gaming applications. Nonetheless, there are limited empirical investigations and understanding on public perceptions concerning AI for disaster management. Bridging this knowledge gap is the justification for this paper. The methodological approach adopted involved: Initially, collecting data through an online survey from residents (n = 605) of three major Australian cities; Then, analysis of the data using statistical modelling. The analysis results revealed that: (a) Younger generations have a greater appreciation of opportunities created by AI-driven applications for disaster management; (b) People with tertiary education have a greater understanding of the benefits of AI in managing the pre- and post-disaster phases, and; (c) Public sector administrative and safety workers, who play a vital role in managing disasters, place a greater value on the contributions by AI in disaster management. The study advocates relevant authorities to consider public perceptions in their efforts in integrating AI in disaster management.  相似文献   
8.
9.
Micro-combustor is a portable power device that can provide energy efficiently, heat recirculating is considered to be an important factor affecting the combustion process. For enhancing the heat recirculating and improving the combustion stability, we proposed a heat-recirculating micro-combustor embedded with porous media, and the numerical simulation was carried out by CFD software. In this paper, the effect of porous media materials, thickness and inlet conditions (equivalence ratio, inlet velocity) on the temperature distribution and exhaust species in the micro combustor are investigated. The results showed that compared with the micro combustor without embedded porous media (MCNPM), micro-combustor embedded with porous media (MCEPM) can improve the temperature uniformity distribution in the radial direction and strengthen the preheating capacity. However, it is found that the embedding thickness of porous media should be reasonably arranged. Setting the thickness of porous media to 15 mm, the combustor can obtain excellent comprehensive capacity of steady combustion and heat recirculating. Compared the thermal performance of Al2O3, SiC, and ZrO2 porous media materials, indicating that SiC due to its strong thermal conductivity, its combustion stabilization and heat recirculating capacity are obviously better than that of Al2O3 and ZrO2. With the porous media embedded in the micro combustor, the combustion has a tempering limit of more than 10 m/s, and the flame is blown out of the porous media area over 100 m/s. The reasonable equivalence ratio of CH4/air combustion should be controlled within the range of 0.1–0.5, and “super-enthalpy combustion” can be realized.  相似文献   
10.
An algorithm is presented for discrete element method simulations of energy-conserving systems of frictionless, spherical particles in a reversed-time frame. This algorithm is verified, within the limits of round-off error, through implementation in the LAMMPS code. Mechanisms for energy dissipation such as interparticle friction, damping, rotational resistance, particle crushing, or bond breakage cannot be incorporated into this algorithm without causing time irreversibility. This theoretical development is applied to critical-state soil mechanics as an exemplar. It is shown that the convergence of soil samples, which differ only in terms of their initial void ratio, to the same critical state requires the presence of shear forces and frictional dissipation within the soil system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号