首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133054篇
  免费   11289篇
  国内免费   5905篇
电工技术   23394篇
技术理论   1篇
综合类   10117篇
化学工业   9144篇
金属工艺   4838篇
机械仪表   12811篇
建筑科学   8911篇
矿业工程   4826篇
能源动力   6330篇
轻工业   14253篇
水利工程   5117篇
石油天然气   3407篇
武器工业   1908篇
无线电   22470篇
一般工业技术   9704篇
冶金工业   2935篇
原子能技术   1629篇
自动化技术   8453篇
  2024年   930篇
  2023年   4029篇
  2022年   4152篇
  2021年   4701篇
  2020年   4278篇
  2019年   4791篇
  2018年   2541篇
  2017年   3806篇
  2016年   4052篇
  2015年   4772篇
  2014年   8373篇
  2013年   6763篇
  2012年   8005篇
  2011年   7961篇
  2010年   6759篇
  2009年   7411篇
  2008年   9351篇
  2007年   8214篇
  2006年   6065篇
  2005年   6245篇
  2004年   5129篇
  2003年   4805篇
  2002年   3899篇
  2001年   3493篇
  2000年   2809篇
  1999年   2391篇
  1998年   2085篇
  1997年   1799篇
  1996年   1695篇
  1995年   1545篇
  1994年   1469篇
  1993年   1102篇
  1992年   996篇
  1991年   1023篇
  1990年   1063篇
  1989年   1066篇
  1988年   227篇
  1987年   129篇
  1986年   78篇
  1985年   59篇
  1984年   47篇
  1983年   35篇
  1982年   26篇
  1981年   41篇
  1980年   15篇
  1979年   9篇
  1965年   3篇
  1959年   7篇
  1957年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
1.
为加快运动微损伤的结痂速度,促进运动微损伤治疗恢复和自愈效果,提出激素干预下一次运动微损伤低功率激光修复系统。通过分析低功率激光在运动医学方面的作用,以CMOS相机、传感器、光源等作为修复系统的硬件,通过驱动脉冲干扰传输,得到图像输出信号,使用不同照明方法滤波图像信息,以用户界面、损伤检测模块、激光模块、主控模块、视觉模块与配置模块构成系统软件部分,依靠该系统抑制胶原纤维的超量生成,抑制活性氧产生,缩减脂质过氧化破损,加快肌肉再生,进而完成对运动微损伤的修复。试验结果表明,激素干扰下低功率激光修复系统能够有效修复不同程度上的运动微损伤,使受损伤区域结痂的速度更快。  相似文献   
2.
3.
半导体功率器件(即电力电子器件)是电力电子技术的三大核心基础之一,被比作电力电子装置的“CPU”。现有功率器件多采用Si基或SOI基,但是受限于自身材料特性的影响,在节能与转换效率方面越来越显示出他们的局限性。为解决上述问题,半导体功率器件除了继续对传统器件进行新理论和新结构的创新研究外,也正在遵循“一代材料、一代器件、一代装置、一代应用”的发展趋势,从传统的Si基和SOI基向宽禁带半导体SiC和GaN基进行扩展和延伸。  相似文献   
4.
2021年中国氯碱行业经济运行整体稳定,产能理性增长,开工率保持高位,出口明显增长,受国家“双控”政策等因素影响,主导产品市场波动较大,行业效益有所提升。  相似文献   
5.
杨斌  林军 《人民长江》2022,53(6):174-179
在岛礁建设中,钙质砂场地会受海浪等周期性荷载影响,因此有必要开展循环荷载下钙质砂的动力响应研究。采用动三轴试验探究了循环荷载作用下,在不同的固结围压、相对密实度和循环应力比条件下饱和钙质砂的孔隙水压力发展规律;将张建民孔压模型用于各工况归一化孔压发展模式的分析,并给出各条件下的推荐孔压模型。研究结果表明:张建民模型C型适用于描述循环应力水平较大时的孔压发展模式,而固结围压、相对密实度较高且处于中等应力水平时可采用修正的张建民模型A型,其余情况均可用B型拟合。此外,各模型的拟合参数与相对密实度和固结围压均有较好的相关性。  相似文献   
6.
射频电感耦合等离子体(ICP)在实际放电过程中,线圈的构型、电源参数、气压等外部工质条件的变化均会对结果产生较大影响,依靠实验很难得到多外部条件对ICP参数分布的影响机理和规律,因此需要结合仿真和实验的方法进行分析。该文通过建立感性线圈的电磁学有限元模型,分析不同线圈构型下射频电磁场在等离子体内部的空间分布,研究放电参数(线圈构型、功率大小)对等离子体分布影响和E-H模型下放电形态的跳变过程,并观察进入稳定H模式后电源参数的变化规律,为等离子体源的小型化工程应用提供理论基础。实验和仿真计算结果表明:不同线圈匝数在不同功率条件下,电磁场强度变化对等离子功率吸收和功率耦合有较大影响;当工作气压在0~20Pa时,ICP的电子密度呈轴对称分布,随着放电功率、气压的增大,等离子体吸收的功率和电离度也随之增加,其电子密度相应地增大,放电功率的增加会使得环状的等离子体区域随之扩大,在轴向、径向上的分布呈先逐渐增大而后在靠近腔室壁面区域迅速下降。  相似文献   
7.
目前,随着电线电缆市场规模不断扩大,对电缆尺寸测量的精度要求不断提高,市场中电线电缆的计量问题也日益显著,因此如何快捷、经济、正确地完成电线电缆尺寸的测定具有十分重要的研究意义和工程价值。相比传统的电缆计量方法,时域反射测量技术(TDR)具有测量精度高、便于携带、能实现无损测量电缆长度等优点。该技术基于电磁波能量在传输的过程中如果遇到阻抗不连续点的情况就会发生反射的特点,对待测量的长导体加入一个脉冲信号,就可根据发送脉冲和断点处反射脉冲的时间差与导体长度成正比的原理来确定断点位置,还能实现对电力电缆短路和断路的故障检测。目前已有该技术的应用实例,但是测量效果并不理想,测量误差较大,甚至达到10%~20%,与理论效果相差甚远,无法满足精细化管理与工程作业的要求。为此对该技术应用于电缆线长度精确测量时的关键技术点展开探讨。  相似文献   
8.
考虑大沟道电流下外沟道局域电子气慢输运行为破坏沟道电中性,诱生空间电荷导致的能带峰势垒,提出了新的跨导崩塌模型。详细计算了不同栅压和不同沟道电流密度、即不同空间电荷密度下的场效应管能带。引入新的能带峰势垒和沟道电子跨越势垒的动态模型,解释了沟道打开过程中源电阻增大、沟道电子平均速度下降、大沟道电流下跨导下降等各类跨导崩塌行为,解释了场效应管沟道电子速度远低于异质结材料的缘由。运用沟道打开时的异质结充电和大沟道电流激励下空间电荷触发的能带峰势垒模型解释了跨导钟形曲线上升段中的电流崩塌和下降段中的跨导崩塌。深入研究了陷阱和局域电子气的相互作用,解释了可靠性加速寿命试验中的跨导曲线变化。沟道夹断的强负栅压应力产生内沟道逆压电缺陷,减弱栅电压对内沟道电子气的控制和沟道打开时跨导的上升斜率。沟道打开后的大电流应力使局域电子气与晶格碰撞产生热电子缺陷和空间电荷,抬高能带峰势垒引发外沟道堵塞,降低沟道电流,导致阈值电压正移。这一研究证明在场效应管直流和射频工作中的器件性能退化都是由陷阱同局域电子气相互作用产生的,开创了优化设计异质结能带来提高场效应管可靠性的新途径。最后讨论大沟道电流下能带峰势垒引发的外沟道堵塞和跨导崩塌在场效应管研发中的重要作用,提出了在空间电荷区上方设置专用的异质结鳍来平衡内、外沟道能带,解开场效应管中的电流崩塌、跨导崩塌、线性、器件性能退化及3 mm高频工作等难点。  相似文献   
9.
10.
王喆  梁杰  侯腾飞  魏永超 《煤炭学报》2022,(6):2270-2278
煤炭地下气化是煤炭无害化开采技术创新战略方向之一,该技术可以回收老矿井废弃煤炭资源,对传统采煤技术难以开采的煤炭资源进行原位清洁转化。气化过程中燃空区形成带来的结构应力和高温造成的热应力共同作用对岩石造成损伤。以大城勘查区深部煤层为气化对象,得出典型围岩热物性及力学参数随温度变化规律。基于连续损伤力学理论,在平滑Rankine损伤模型的基础上提出高温岩石损伤变量模型,使用COMSOL Multiphysics多物理场耦合软件对深部煤层地下气化过程围岩温度、主应力、损伤变量进行模拟研究。结果表明,5种典型岩石的比热容随温度升高整体呈上升趋势,导热系数随温度升高整体呈下降趋势,抗压强度和弹性模量随温度变化规律差别较大。围岩受温度影响范围随气化时间呈指数变化,气化10 d时,温度影响范围仅为3.27 m;气化50 d时,温度影响范围达到5.73 m;气化100 d时,温度影响范围为8.21 m;气化400 d时,温度影响范围达到18.20 m。结合地下气化过程中普遍采用的控制注气点后退气化法,岩石处于高温区的时间在40 d左右,温度场对围岩的影响范围约为4.7 m。燃空区上方及两端均出现损伤...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号