首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108351篇
  免费   10240篇
  国内免费   7442篇
电工技术   3693篇
技术理论   1篇
综合类   6913篇
化学工业   28385篇
金属工艺   9952篇
机械仪表   4976篇
建筑科学   4537篇
矿业工程   2571篇
能源动力   3020篇
轻工业   6776篇
水利工程   1251篇
石油天然气   4179篇
武器工业   862篇
无线电   13260篇
一般工业技术   14927篇
冶金工业   4441篇
原子能技术   1706篇
自动化技术   14583篇
  2024年   157篇
  2023年   1803篇
  2022年   2245篇
  2021年   3823篇
  2020年   3312篇
  2019年   3010篇
  2018年   2689篇
  2017年   3427篇
  2016年   4042篇
  2015年   4016篇
  2014年   5769篇
  2013年   6356篇
  2012年   7172篇
  2011年   9118篇
  2010年   6926篇
  2009年   7808篇
  2008年   6660篇
  2007年   7757篇
  2006年   7039篇
  2005年   5820篇
  2004年   4627篇
  2003年   4237篇
  2002年   3150篇
  2001年   2357篇
  2000年   2239篇
  1999年   1736篇
  1998年   1286篇
  1997年   1036篇
  1996年   983篇
  1995年   837篇
  1994年   777篇
  1993年   623篇
  1992年   512篇
  1991年   456篇
  1990年   331篇
  1989年   277篇
  1988年   188篇
  1987年   163篇
  1986年   193篇
  1985年   143篇
  1984年   112篇
  1983年   100篇
  1982年   96篇
  1981年   85篇
  1980年   84篇
  1979年   73篇
  1977年   68篇
  1976年   69篇
  1975年   79篇
  1974年   78篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
1.
Retrieving 3D shapes with 2D images has become a popular research area nowadays, and a great deal of work has been devoted to reducing the discrepancy between 3D shapes and 2D images to improve retrieval performance. However, most approaches ignore the semantic information and decision boundaries of the two domains, and cannot achieve both domain alignment and category alignment in one module. In this paper, a novel Collaborative Distribution Alignment (CDA) model is developed to address the above existing challenges. Specifically, we first adopt a dual-stream CNN, following a similarity guided constraint module, to generate discriminative embeddings for input 2D images and 3D shapes (described as multiple views). Subsequently, we explicitly introduce a joint domain-class alignment module to dynamically learn a class-discriminative and domain-agnostic feature space, which can narrow the distance between 2D image and 3D shape instances of the same underlying category, while pushing apart the instances from different categories. Furthermore, we apply a decision boundary refinement module to avoid generating class-ambiguity embeddings by dynamically adjusting inconsistencies between two discriminators. Extensive experiments and evaluations on two challenging benchmarks, MI3DOR and MI3DOR-2, demonstrate the superiority of the proposed CDA method for 2D image-based 3D shape retrieval task.  相似文献   
2.
A high-throughput (105.5 g/h) passive four-stage asymmetric oscillating feedback microreactor using chaotic mixing mechanism was developed to prepare aggregated Barium sulfate (BaSO4) particles of high primary nanoparticle size uniformity. Three-dimensional unsteady simulations showed that chaotic mixing could be induced by three unique secondary flows (i.e., vortex, recirculation, and oscillation), and the fluid oscillation mechanism was examined in detail. Simulations and Villermaux–Dushman experiments indicate that almost complete mixing down to molecular level can be achieved and the prepared BaSO4 nanoparticles were with narrow primary particle size distribution (PSD) having geometric standard deviation, σg, less than 1.43 when the total volumetric flow rate Qtotal was larger than 10 ml/min. By selecting Qtotal and reactant concentrations, average primary particle size can be controlled from 23 to 109 nm as determined by microscopy. An average size of 26 nm with narrow primary PSD (σg = 1.22) could be achieved at Qtotal of 160 ml/min.  相似文献   
3.
Hydrogen peroxide (H2O2) has been listed as one of the 100 most important chemicals in the world. However, huge amount of residual H2O2 is hard to timely decomposed into O2 and H2O under acidic condition, easily resulting in explosion hazard. Here, we reported a core–shell structure catalyst, that is graphene with Co N structure encapsulated Co nanoparticles. Co N graphene shell serves as the active site for the H2O2 decomposition, and Co core further enhance this decomposition. Benefiting from it, the H2O2 decomposition were close to 100% after 6 cycles without pH adjustment, which increased 6 orders of magnitude compared with no catalyst. At the same time, the O2 generation reached 99.67% in 2 h with little metal leaching, and ·OH has been greatly inhibited to only 0.08%. This work can cleanly remove H2O2 with little deep oxidation and protect the process of H2O2 utilization to achieve a safer world.  相似文献   
4.
This work describes facile synthesis of a porous polymeric material ( T-HCP ) using readily available reagents. Specifically, T-HCP is a thermally stable and hypercrosslinked polymer (HCP) that is essentially microporous with a high BET specific surface area (940 m2 g?1). Triptycene based polymers are known to feature internal free volume. Thus, the incorporation of triptycene units and extensive crosslinking by an external cross-linker in T-HCP makes it a promising adsorbent for small gas capture applications. Experimental results show that T-HCP demonstrated good CO2 capture capacity of 132 mg g?1 (273 K, 1 bar). Molecular hydrogen storage capacity of T-HCP is estimated to be 17.7 mg g?1 (77 K, 1 bar). T-HCP revealed high CO2/N2 selectivity (up to 63) as well as promising CO2/CH4 (up to 9.1) selectivity suggesting its potential applicability for CO2 separation from flue and natural gases.  相似文献   
5.
甫沙4井位于塔里木盆地塔西南坳陷昆仑山前冲断带的柯东构造带上,北部和东部分别发育有柯克亚和柯东1井油气田。为研究甫沙4井原油来源与充注过程,对原油样品和连续抽提后的含油砂样各组分(游离态、束缚态、包裹体)进行GC、GC?MS和 GC?IRMS分析,与柯克亚凝析油气田油样进行油—油对比。结果表明:甫沙4井晚期充注原油组分具有C29?32重排藿烷、重排甾烷和Ts相对含量高,C27?29甾烷ααα 20R分布呈反“L”型,以及正构烷烃单体碳同位素值较低等特征,与柯克亚凝析油气田来源于二叠系普司格组(P2?3p)烃源岩的主体原油(I类)地球化学特征一致。而早期充注的原油组分具有重排藿烷、重排甾烷和Ts相对含量较低,C27?29甾烷ααα 20R分布呈“V”型,以及正构烷烃单体碳同位素值较高等特征,与柯克亚凝析油气田来源于中—下侏罗统湖相泥岩的II类原油地球化学特征一致。甫沙4井经历3个阶段成藏过程:①在上新世,二叠系烃源岩于生油晚期阶段生成的I类原油运移至柯克亚构造带或柯东构造带深部形成油藏;②在更新世早期,侏罗系烃源岩于生油早—中期生成的II类原油运移至甫沙4井白垩系储层;③在第四纪,强烈的构造作用使深部I类原油沿断裂调整进入甫沙4井白垩系储层。最终造成甫沙4井白垩系储层II类原油先充注,I类原油后充注的特殊现象。  相似文献   
6.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
7.
With the proliferation of additive manufacturing and 3D printing technologies, a broader palette of material properties can be elicited from cellular solids, also known as metamaterials, architected foams, programmable materials, or lattice structures. Metamaterials are designed and optimized under the assumption of perfect geometry and a homogeneous underlying base material. Yet in practice real lattices contain thousands or even millions of complex features, each with imperfections in shape and material constituency. While the role of these defects on the mean properties of metamaterials has been well studied, little attention has been paid to the stochastic properties of metamaterials, a crucial next step for high reliability aerospace or biomedical applications. In this work we show that it is precisely the large quantity of features that serves to homogenize the heterogeneities of the individual features, thereby reducing the variability of the collective structure and achieving effective properties that can be even more consistent than the monolithic base material. In this first statistical study of additive lattice variability, a total of 239 strut-based lattices were mechanically tested for two pedagogical lattice topologies (body centered cubic and face centered cubic) at three different relative densities. The variability in yield strength and modulus was observed to exponentially decrease with feature count (to the power −0.5), a scaling trend that we show can be predicted using an analytic model or a finite element beam model. The latter provides an efficient pathway to extend the current concepts to arbitrary/complex geometries and loading scenarios. These results not only illustrate the homogenizing benefit of lattices, but also provide governing design principles that can be used to mitigate manufacturing inconsistencies via topological design.  相似文献   
8.
The study of steels which guarantee safety and reliability throughout their service life in hydrogen-rich environments has increased considerably in recent years. Their mechanical behavior in terms of hydrogen embrittlement is of utmost importance. This work aims to assess the effects of hydrogen on the tensile properties of quenched and tempered 42CrMo4 steels. Tensile tests were performed on smooth and notched specimens under different conditions: pre-charged in high pressure hydrogen gas, electrochemically pre-charged, and in-situ hydrogen charged in an acid aqueous medium. The influence of the charging methodology on the corresponding embrittlement indexes was assessed. The role of other test variables, such as the applied current density, the electrolyte composition, and the displacement rate was also studied. An important reduction of the strength was detected when notched specimens were subjected to in-situ charging. When the same tests were performed on smooth tensile specimens, the deformation results were reduced. This behavior is related to significant changes in the operative failure micromechanisms, from ductile (microvoids coalescence) in absence of hydrogen or under low hydrogen contents, to brittle (decohesion of martensite lath interfaces) under the most stringent conditions.  相似文献   
9.
10.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号