首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205260篇
  免费   15107篇
  国内免费   10218篇
电工技术   14876篇
技术理论   2篇
综合类   15122篇
化学工业   12029篇
金属工艺   14514篇
机械仪表   21125篇
建筑科学   24662篇
矿业工程   8911篇
能源动力   2614篇
轻工业   16949篇
水利工程   6866篇
石油天然气   7183篇
武器工业   1953篇
无线电   25385篇
一般工业技术   17223篇
冶金工业   4290篇
原子能技术   1093篇
自动化技术   35788篇
  2024年   1708篇
  2023年   7131篇
  2022年   6362篇
  2021年   7655篇
  2020年   7113篇
  2019年   8029篇
  2018年   3533篇
  2017年   5603篇
  2016年   6274篇
  2015年   7707篇
  2014年   14511篇
  2013年   11124篇
  2012年   13032篇
  2011年   12559篇
  2010年   11862篇
  2009年   12192篇
  2008年   13499篇
  2007年   11590篇
  2006年   9731篇
  2005年   9070篇
  2004年   7680篇
  2003年   6648篇
  2002年   5250篇
  2001年   4485篇
  2000年   3793篇
  1999年   3030篇
  1998年   2763篇
  1997年   2541篇
  1996年   2483篇
  1995年   2117篇
  1994年   1831篇
  1993年   1558篇
  1992年   1534篇
  1991年   1379篇
  1990年   1321篇
  1989年   1261篇
  1988年   199篇
  1987年   101篇
  1986年   81篇
  1985年   47篇
  1984年   59篇
  1983年   53篇
  1982年   30篇
  1981年   31篇
  1980年   15篇
  1979年   5篇
  1977年   1篇
  1959年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 615 毫秒
1.
王喆  梁杰  侯腾飞  魏永超 《煤炭学报》2022,(6):2270-2278
煤炭地下气化是煤炭无害化开采技术创新战略方向之一,该技术可以回收老矿井废弃煤炭资源,对传统采煤技术难以开采的煤炭资源进行原位清洁转化。气化过程中燃空区形成带来的结构应力和高温造成的热应力共同作用对岩石造成损伤。以大城勘查区深部煤层为气化对象,得出典型围岩热物性及力学参数随温度变化规律。基于连续损伤力学理论,在平滑Rankine损伤模型的基础上提出高温岩石损伤变量模型,使用COMSOL Multiphysics多物理场耦合软件对深部煤层地下气化过程围岩温度、主应力、损伤变量进行模拟研究。结果表明,5种典型岩石的比热容随温度升高整体呈上升趋势,导热系数随温度升高整体呈下降趋势,抗压强度和弹性模量随温度变化规律差别较大。围岩受温度影响范围随气化时间呈指数变化,气化10 d时,温度影响范围仅为3.27 m;气化50 d时,温度影响范围达到5.73 m;气化100 d时,温度影响范围为8.21 m;气化400 d时,温度影响范围达到18.20 m。结合地下气化过程中普遍采用的控制注气点后退气化法,岩石处于高温区的时间在40 d左右,温度场对围岩的影响范围约为4.7 m。燃空区上方及两端均出现损伤...  相似文献   
2.
本文将完全互补码(Complete Complementary Code, CCC)应用于多输入多输出(Multiple Input Multiple Output, MIMO)雷达目标探测中,针对具有非零多普勒的多目标检测问题,提出一种基于广义普洛黑-修-莫尔斯(Generalized Prouhet-Thue-Morse, GPTM)序列和二项式系数加权的信号处理方法。该方法分别在发射端和接收端进行处理,在发射端采用GPTM序列设计方法调整脉冲的发射顺序,以降低由多普勒引起的距离旁瓣;在接收端通过二项式设计(Binomial Design, BD)方法为各接收脉冲加上不同权重,扩大目标多普勒附近的清洁区。为综合上述两次处理的优势,将两次处理得到的距离多普勒谱进行逐点最小化处理,得到最终的距离多普勒谱,然后进行有序恒虚警检测。仿真结果表明,本文所提的信号处理方法具有良好的旁瓣抑制效果和多普勒分辨率,能够有效检测出非零多普勒目标。  相似文献   
3.
钻孔灌注桩在实际施工过程中,由于地质情况、环境天气、机械设备及人为操作等各种内外因素,难免会出现一些影响工程质量的问题,造成安全事故隐患。简要说明了某钻孔灌注桩桩基项目的工程概况,针对工程桩的的质量检测结果及问题成因进行了分析探讨,并结合现场施工情况给出了补强处理方案,最后对钻孔灌注桩的优缺点进行了初步总结,并强调了质量安全注意事项。  相似文献   
4.
随着食品和膳食补充剂的市场变得越来越全球化,食品和膳食补充剂的安全性、质量和功效引起人们的高度关注。近年来,食品和膳食补充剂中被检测出兴奋剂阳性的事件屡见不鲜。运动员在误服误用被兴奋剂污染的食品和膳食补充剂后,会导致兴奋剂检测呈阳性,这对运动员和国家都造成了重大损失。由于摄入受污染的食品或膳食补充剂会导致严重的健康损害或意外违反反兴奋剂规定,因此准确了解食品和膳食补充剂中兴奋剂污染种类是十分有必要的。本文主要从食品和膳食补充剂中兴奋剂污染的来源和种类以及常用的检测方法等方面进行简要概述,以提高运动员对高风险食品的警惕和防范,避免因误服被兴奋剂污染的食品、膳食补充剂而导致的不良分析结果。  相似文献   
5.
针对传统的电弧电路故障检测结果不准确的问题,设计用于电弧检测的SoC系统,并且在55nm工艺下进行流片验证。采用包含两种结构的模数转换器的片上电压源,设计了锁相环以及复位电路,精度最高可达8.67 bit。验证结果表明,本设计可提高电弧检测的准确性。  相似文献   
6.
诱导式卫星欺骗干扰可诱导航空器逐渐偏离预定航迹,难以被发现,因此及时有效地检测干扰是飞行安全的保障。在现有紧组合导航体制基础上,设计了一种基于误差估值累加开环校正的紧组合导航结构,并证明了其性能与传统闭环校正紧组合导航性能等效。在此结构中,将紧组合导航系统与自适应序贯概率比检测方法结合,提出了一种基于误差估值累加开环校正的诱导式欺骗检测方法,融合紧组合导航信息与其他不受欺骗影响的导航信息,构建欺骗检测统计量进行诱导式欺骗检测。仿真结果表明,开环校正结构可避免随时间累加的惯性导航系统误差所导致的组合导航滤波器发散问题,同时欺骗检测方法可进一步提高算法对“最坏”情形下微小诱导式欺骗的检测效果。  相似文献   
7.
8.
目的:解决当前饮料瓶盖检测系统功能单一、体积偏大、颜色识别率低的问题。方法:提出一种基于ARM处理器的小型饮料瓶盖颜色识别系统设计方案,通过仿真软件HyperLynx的LineSim工具设计四层PCB板,设置传输线参数并进行阻抗匹配仿真分析;利用编译软件Jupyter Notebook实现阈值设置、目标轮廓检测、目标框出等功能。结果:在强、弱光条件下,识别系统对红、绿、蓝3种颜色瓶盖的识别率达到92.7%。结论:与傅里叶描述子相比,该识别系统识别准确率和精度更高,同时系统也具有人脸识别功能,适用于各种智能应用场景。  相似文献   
9.
瞿中  谢钇 《计算机科学》2021,48(4):187-191
针对现有的混凝土裂缝检测算法在各种复杂环境中检测精度不够、鲁棒性不强的问题,根据深度学习理论和U-net模型,提出一种全U型网络的裂缝检测算法。首先,依照原U-net模型路线构建网络;然后,在每个池化层后都进行一次上采样,恢复其在池化层之前的特征图规格,并将其与池化之前的卷积层进行融合,将融合之后的特征图作为新的融合层与原U-net网络上采样之后的网络层进行融合;最后,为了验证算法的有效性,在测试集中进行实验。结果表明,所提算法的平均精确率可达到83.48%,召回率为85.08%,F1为84.11%,相较于原U-net分别提升了1.48%,4.68%和3.29%,在复杂环境中也能提取完整裂缝,保证了裂缝检测的鲁棒性。  相似文献   
10.
黄科  袁启平  董薇  孙沂昆  亢勇  王天翔 《电视技术》2021,45(10):129-135
恶意代码数量已经呈现爆炸式增长,对于恶意代码的检测防护显得尤为重要.近几年,基于深度学习的恶意代码检测方法开始出现,基于此,提出一种新的检测方法,将恶意代码二进制文件转化为十进制数组,并利用一维卷积神经网络(1 Dimention Convolutional Neural Networks,1D CNN)对数组进行分类和识别.针对代码家族之间数量不平衡的现象,该算法选择在分类预测上表现良好的XGBoost,并对Vision Research Lab中的25个不同恶意软件家族的9458个恶意软件样本进行了实验.实验结果表明,所提的方法分类预测精度达到了97%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号