首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1191篇
  免费   338篇
  国内免费   26篇
电工技术   48篇
综合类   39篇
化学工业   1084篇
金属工艺   19篇
机械仪表   11篇
建筑科学   19篇
矿业工程   31篇
能源动力   116篇
轻工业   39篇
石油天然气   32篇
武器工业   3篇
无线电   4篇
一般工业技术   57篇
冶金工业   45篇
原子能技术   6篇
自动化技术   2篇
  2024年   6篇
  2023年   10篇
  2022年   27篇
  2021年   85篇
  2020年   80篇
  2019年   42篇
  2018年   86篇
  2017年   85篇
  2016年   83篇
  2015年   89篇
  2014年   91篇
  2013年   78篇
  2012年   111篇
  2011年   64篇
  2010年   65篇
  2009年   64篇
  2008年   72篇
  2007年   66篇
  2006年   81篇
  2005年   48篇
  2004年   58篇
  2003年   56篇
  2002年   45篇
  2001年   17篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1988年   3篇
  1986年   2篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1951年   1篇
排序方式: 共有1555条查询结果,搜索用时 46 毫秒
1.
Cuspidine-based systems are used to control the crystallization in mold fluxes, which is enabled by CaF2 additions. However, excess CaF2 increases the corrosion of casting machines. Therefore, Na2O and K2O are added to the mold flux system to ensure an optimized crystallization and lubrication ability of the flux with the CaF2 content. This study investigated the effect of substituting Na2O with K2O on the volatilization of fluorine in a CaO–SiO2–CaF2-based slag system at high temperatures. The substitution of Na2O with K2O was performed at 5 mol% intervals. The volatilization was observed by thermogravimetric analysis under several isothermal conditions. The mass loss was measured at a heating rate of 5, 10, and 20 K/min. As the temperature increased, the volatilization of the mixed samples increased. The activation energy was calculated using the Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methods. A kinetic analysis of the volatilization of fluorine was conducted using the calculated parameters and several known kinetic models. Consequently, the volatilization of the Na-rich sample was controlled by chemical reactions and that of the K-rich sample was identified to be controlled by a phase-boundary-controlled reaction. These results suggest that the addition of mixed alkali oxide promote the volatilization during the early stages of the reaction. From the post-experimental composition analyses, the remaining Na and K in the samples suggested a different mechanism for the Na and K volatilization. The volatilization of Na increased with time, whereas K volatilized easily during the beginning of the reaction.  相似文献   
2.
Reinforcement of PEEK by nanoparticles such as multiwalled carbon nanotubes (MWCNTs), is a promising technique to prepare PEEK nanocomposites with improved properties for promising biomedical applications. However, proper dispersion of MWCNTs in the polymer matrices is a primary processing challenge. The present study reports a novel and environmentally beneficial approach for homogeneous dispersion of MWCNT in PEEK by using ionic liquid (IL) 1-ethyl-3-methylimidazolium hydrogen sulfate ([EMIM][HSO4]). Neat PEEK, PEEK-MWCNTs (using conventional organic solvent dimethylformamide), and PEEK-MWCNTs-IL (using [EMIM][HSO4]) nanocomposites were fabricated via melt-compounding and compression molding techniques. The fabricated composites were characterized for morphological, thermal, and mechanical properties and compared to those of neat PEEK and PEEK-MWCNTs. Ionic liquid provoked proficient dispersion of the MWCNTs in PEEK, as confirmed by FESEM and optical micrographs. The thermal stability of PEEK-MWCNTs-IL composite was significantly superior to that of the neat PEEK and PEEK-MWCNTs. Analysis of tensile strength and nanoindentation depicted that the modulus of elasticity of PEEK-MWNCTs-IL was significantly increased by 76% as compared to that of neat PEEK. We believe that the present work could provide a new and green platform for the manufacturing of PEEK nanocomposites with enhanced dispersion of nanofillers for biomedical applications.  相似文献   
3.
为研究水泥窑协同处置市政污泥的燃烧动力学特性,采用热重分析方法分别对市政污泥、煤和水泥生料及三者混合样品进行热动力学分析,求解了反应活化能和机理函数。结果表明:市政污泥燃烧有4个阶段,有机物分解和部分挥发分析出阶段活化能为69.87 kJ/mol、机理函数为(-ln(1-α))~4,剩余挥发分析出和固定碳燃尽阶段活化能为78.94 kJ/mol、机理函数为(-ln(1-α))~3;煤和水泥生料热重分析过程分为煤燃烧和生料分解2个阶段,反应活化能分别为43.58、118.21 kJ/mol,机理函数分别为(1-α)~(-1)-1、((1+α)~(1/3)-1)~2;市政污泥替代20%煤后,第1阶段活化能基本不变,机理函数由(1-α)~(-1)-1变为(1-2α/3)-(1-α)~(2/3),反应机理由"化学反应"变为"圆柱对称型三维扩散",第2阶段活化能降低,机理函数表达式由((1+α)~(1/3)-1)~2变为((1+α)~(-1/3)-1)~2,反应机理不变。  相似文献   
4.
采用热重分析法研究了不同热解条件下半焦的燃烧性能和动力学特征,利用Ozawa法求取动力学参数。结果表明,热解温度越低、保温时间越短时,半焦的燃烧性能越好;热解升温速率对半焦燃烧过程的反应程度影响不大;粒度越大,燃烧性能差异性越明显。热解温度对半焦燃烧性能影响较大,550℃是本研究中制备高燃烧反应性半焦的适宜热解温度。两种不同粒度原煤制得的半焦均随转化率增大,活化能减小。1~3 mm原煤在热解温度为550℃时所得半焦在燃烧过程中符合反应级数模型,化学反应为限制性环节,反应最概然机理函数为f(α)=(1–α)2。  相似文献   
5.
A novel intumescent (carbonization, acid donor and foaming) fire retardant that mimics carbon nanotubes was introduced into bitumen roofing and characterized using cone calorimetry as the main analytical tool. The experimental results indicate that 18% (by mass) attapulgite mineral (ATTP) mixed with base bitumen decreased the peak heat release rate per unit area (pHRRPUA) by 10%. Further, incorporation of melamine coated ammonium polyphosphate (MAPP) decreased the pHRRPUA by 52% and a mixture of these (3:1, ATTP:MAPP) decreased the pHRRPUA by 25% as compared to adding CaCO3 as a filler. The residual mass loss after the cone test was also improved with up to 3%. The indication of a positive synergistic flame retardant effect of the ATTP-MAPP mixture is supported by thermogravimetric analysis. The addition of this rod-like mineral improved the general fire retardant properties of the base bitumen and increased the viscosity. Therefore, the polymer-modified bitumen with both fire retardant and rheological properties (providing mechanical strength) is a promising novel approach in the design of bitumen roofing membranes.  相似文献   
6.
The aim of this study is to investigate the synergistic effects of modified TiO2/multifunctionalized graphene oxide nanosheets at different ratios on the interface compatibility between starch and poly(lactic acid) (PLA). To this end, silanylated nano-TiO2 (MTiO2, 1 and 2%) and alkylated maleic anhydride grafted graphene oxide (f-GO, 0.1, 0.2, and 0.4%) at different combinations are blended with the PLA-starch composites using solution blending technique. Then, the synergistic effects of MTiO2 and f-GO on PLA/starch matrix are investigated in terms of the morphology, crystallinity, structural characterization, thermal stability, dynamic mechanical, and antiaging properties, and the related mechanisms. The Raman and Fourier transform infrared spectroscopy spectra verify the successful synthesis of the two modified nanofillers (f-GO and MTiO2) and the formation of strong hydrogen bond within the PLA-starch nanocomposites. Due to the strong interfacial interaction and the synergistic effect from the combination of 1% MTiO2 and 0.2% f-GO, obvious improvement was observed in PLA-starch versus other nanocomposites in terms of morphology, thermal stability, surface hydrophobicity, storage modulus, ultraviolet-shielding capacity, and aging-resistance. Furthermore, differential scanning calorimeter (DSC), isothermal crystallization kinetic, and X-ray diffraction analysis demonstrate that f-GO and the M-TiO2 significantly synergize in enhancing the crystallization rate and crystallinity of PLA/starch matrix. These results provide novel insights for constructing high-performance nanocomposites and facilitate their applications in food packaging.  相似文献   
7.
8.
Gas phase criteria for the onset of flaming combustion of solids in fires are used to locate a critical temperature Tcr in a nonisothermal analysis (TA) experiment that corresponds to the surface temperature of the solid at ignition in a fire test, Tign. This critical TA temperature occurs at low conversion of solid to gaseous fuel so it is independent of the heating rate in the test or the thermal decomposition reaction model. However, Tcr depends on the thermal properties of the polymer and the conditions of the fire test in which the gas phase criteria were measured. Nonisothermal analysis data in nitrogen and air were obtained for 20 polymers by thermogravimetric analysis and microscale combustion calorimetry. The critical temperatures Tcrs obtained from TA experiments compared favorably with analytic results for a simple polymer ignition model and finite element simulations and were in qualitative agreement with ignition temperatures measured in standardized fire tests.  相似文献   
9.
The influence of boric acid (BA) and borax (BO) neutron-absorbing fillers on thermal stability and viscoelastic behavior of natural rubber (NR) low-density polyethylene composites has been studied. The thermal degradation and dynamic mechanical properties of the composites have been analyzed as a function of temperature. The results revealed the enhancement of thermal stability of the composites by the addition of BA and BO fillers. The flame resistance of the material was improved by the addition of both the fillers. The storage modulus was found to be dependent upon the temperature and nature of the filler. The amount of NR chains immobilized by filler particles has been quantified from dynamic mechanical analysis and secondary filler/filler interactions have been verified by the Payne effect analysis. Finally, the experimental results have been compared with theoretical predictions.  相似文献   
10.
The porous polyimide/hollow mesoporous silica nanoparticles (PI/HMSNs) composite films were fabricated via blending polymerization by using polystyrene (PS) microspheres as the pore-forming template. The morphologies, microstructures, thermal stability, thermal expansion coefficient (TEC), and mechanical performances of the porous PI/HMSNs films were characterized in detail. Results showed that the uniform dispersion of HMSNs benefits from the strong hydrogen-bonding interaction between the hydroxyl groups of HMSNs and poly(amic acid) chains. Both weight loss and TEC of the porous PI/HMSNs films are lower than those of the pure porous PI film. When 0.8 wt % HMSNs and 7.0 wt % PS were added into the PI matrix, the Young's modulus and tensile strength of composite film increased by about 32.4% and 68.1% compared with those of the pure porous PI film. Conclusively, the introduction of HMSNs in the porous PI matrix is an important strategy to enrich the diversity of porous structure, improve the thermal and mechanical properties of the porous PI material simultaneously. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48792.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号