首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1878篇
  免费   18篇
  国内免费   37篇
电工技术   12篇
综合类   33篇
化学工业   660篇
金属工艺   48篇
机械仪表   64篇
建筑科学   131篇
矿业工程   8篇
能源动力   334篇
轻工业   146篇
水利工程   9篇
石油天然气   23篇
武器工业   2篇
无线电   77篇
一般工业技术   232篇
冶金工业   76篇
原子能技术   30篇
自动化技术   48篇
  2024年   1篇
  2023年   35篇
  2022年   54篇
  2021年   57篇
  2020年   50篇
  2019年   38篇
  2018年   49篇
  2017年   48篇
  2016年   52篇
  2015年   42篇
  2014年   74篇
  2013年   127篇
  2012年   81篇
  2011年   172篇
  2010年   128篇
  2009年   137篇
  2008年   134篇
  2007年   116篇
  2006年   90篇
  2005年   70篇
  2004年   66篇
  2003年   63篇
  2002年   54篇
  2001年   29篇
  2000年   28篇
  1999年   16篇
  1998年   15篇
  1997年   25篇
  1996年   14篇
  1995年   14篇
  1994年   9篇
  1993年   6篇
  1992年   5篇
  1991年   11篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1982年   5篇
  1979年   1篇
排序方式: 共有1933条查询结果,搜索用时 31 毫秒
1.
The durability of metal plate proton exchange membrane fuel cell (PEMFC) stack is still an important factor that hinders its large-scale commercial application. In this paper, we have conducted a 1000 h durability test on a 1 kW metal plate PEMFC stack, and explored the degradation of the core components. After 1000 h of dynamic load cycles, the voltage decay percentage of the stack under the current densities of 1000 mA cm?2 is 5.67%. By analyzing the scanning electron microscopy (SEM) images, the surfaces of the metal plates are contaminated locally by organic matter precipitated from the membrane electrode assembly (MEA). The SEM images of the catalyst coated membrane (CCM) cross section indicate that the MEA has undergone severe degradation, including the agglomeration of the catalyst layer, and the thinning and perforation of the PEM. These are the main factors that cause the rapid increase in hydrogen crossover flow rate and performance decay of the PEMFC stack.  相似文献   
2.
《Ceramics International》2021,47(22):31485-31496
Mesoporous SmMnO3/CuMnOx catalyst was prepared by a two-step method using flaky CuMnOx with high specific surface and excellent catalytic ability as the carrier, which was further applied to photothermal synergistic degradation of gaseous toluene. Quantitative analysis of O2-TPD and H2-TPR showed that SmMnO3/CuMnOx exhibited abundant of the surface oxygen species and oxygen vacancies content, which enabled it to convert free oxygen to lattice oxygen more quickly during the reaction, and thus improving the reaction process. I-t and photoluminescence experiments demonstrated the improvement of photogenerated electron and hole separation ability of SmMnO3/CuMnOx catalyst. UV–Vis analysis manifested the full spectral range of absorption. XPS analysis verified the unequal positions of valence band of the two materials, which can facilitate the separation of photogenerated electrons from holes and improve the ability of better electron transfer. SmMnO3/CuMnOx catalyst has higher adsorbed oxygen content and light absorption capacity, which is beneficial to the catalytic oxidation. In situ DRIFTs proved that the oxidation reaction on the catalyst followed the Mars-van Krevelen redox cycle. The VOCs test found that SmMnO3/CuMnOx composite catalyst is with lower onset reaction temperature (T90 = 190 °C, T90, corresponding to 90% conversion) and good mineralization (100% at 275 °C).  相似文献   
3.
Ultrawide band gap semiconductor materials have attracted considerable attention in recent years owing to their great potential in the photocatalytic field. In this study, Zn-doped Ga2O3 nanofibers with various concentrations were synthesized via electrospinning; they exhibited a superior photocatalytic degradation performance of rhodamine B dye compared to that of undoped Ga2O3 nanofibers. The Zn dopant replaced Ga sites via replacement doping, which could increase the concentration of oxygen vacancies and lead to enhanced photocatalytic properties. When the Zn concentration increased, a Ga2O3/ZnGa2O4 hybrid structure formed, which could further enhance the photocatalytic performance. The separation of photogenerated carriers due to Zn doping and heterojunctions were the primary causes of the enhanced photocatalytic performance. This study provides experimental data for the fabrication of high-performance photocatalysts based on Ga2O3 nanomaterials.  相似文献   
4.
In this work, density functional theory (DFT) calculations were used to investigate the mechanism of carbon corrosion on nitrogen-doped carbon support. Free energy diagrams were generated based on three proposed reaction pathways to evaluate corrosion mechanisms. The most energetically preferred mechanism on nitrogen-doped carbon was determined. The results show that the step of water dissociation to form #OH was the rate-determining step for gra-G-1N (graphene doped with graphitic N) and pyrr-G-1N (graphene doped with pyrrolic N). As for graphene doped with pyridinic N, the step of C#OC#O formation was critical. It was found that the control of nitrogen concentration was necessary for precisely designing optimized carbon materials. Abundance of nitrogen moieties aggravated the carbon corrosion. When the high potential was applied, specific types of graphitic N and pyridinic N were found to be favorable carbon modifications to improve carbon corrosion resistance. Moreover, the solvent effect was also investigated. The results provide theoretical insights and design guidelines to improve corrosion resistance in carbon support through material modification by inhibiting the adsorption of surface oxides (OH, O, and OOH).  相似文献   
5.
The proton exchange membrane fuel cell has been widely used for industrial systems; however, its performance gradually degrades during use. Therefore, the study on the performance degradation prediction of fuel cells is helpful to extend its lifespan. In this paper, a novel hybrid approach using a combination of model-based adaptive Kalman filter and data-driven NARX neural network is proposed to predict the degradation of fuel cells. The overall degradation trend (i.e., irreversible degradation process) is captured by an empirical aging model and adaptive Kalman filter. Meanwhile, the detail degradation information (i.e., reversible degradation process) is depicted by the NARX neural network. Moreover, the correlation analysis of the reversible voltage time series is carried out to obtain the number of delays of the NARX neural network based on the autocorrelation function and the partial autocorrelation function. Then, the total degradation prediction is the sum of the overall degradation prediction and the detail degradation prediction. Finally, the prognostic capability of the proposed method is verified by two aging datasets, and the results show the effectiveness and superiority of the proposed method which can provide accurate degradation forecasting and remaining useful life.  相似文献   
6.
Research in the field of TiO2-based photocatalysis has gained wide attention to address important energy and environmental problem. Lately, the use of conducting polymers as photosensitizers has proven to immensely enhance photodegradation by exhibiting excellent photocatalytic activity under both ultraviolet light and natural sunlight irradiation which is not possible using semiconductors alone. Considering the unique performance of conducting polymer-based nanocomposites in photocatalysis, the present review provides the recent advances in the development of ultraviolet and visible light-responsive conducting polymer-based TiO2 nanocomposites for their potential application in environmental remediation. This review ends with a summary focusing on the challenges and new dimensions in this still emerging area of research.  相似文献   
7.
Thin and lightweight organic light-emitting diodes (OLEDs) are promising candidates for next-generation rollable displays; they offer numerous advantages, such as scalable manufacturing, high color contrast ratio, flexibility, and wide viewing angle. Despite the numerous merits of OLEDs, the insufficient lifetime and stability of blue OLEDs remain unresolved, thereby necessitating a feedback strategy for lifetime extension. Herein, we propose a simple yet effective methodology to determine the contact resistance (RCT) and characteristic trap energy (ET) of OLEDs simultaneously in the trapped-charge-limited-conduction regime, where electroluminescence occurs primarily. To validate our approach, the extracted RCT and ET values are directly compared with each other by connecting a commercial resistor (RC) to a blue OLED in series. The percent errors discovered in RC and ET are less than 7% and 4%, demonstrating the high feasibility and accuracy of our approach. We further employ this method to study the degradation mechanism of a blue OLED by presenting the electrical stress time- and cycle-dependent RCT, ET, ideality factor, and turn-on voltage, revealing different degradation patterns of the metal-to-transport layer interface and emission layer, respectively. Our results provide better insights into the electrical parameter extraction method and electrical current degradation mechanism in blue OLEDs.  相似文献   
8.
Degradation data have been widely used for the remaining useful life (RUL) prediction of systems. Most existing works apply a preset model to capture the degradation process and focus on the degradation process without shocks or constant shock effects. More generally, the actual degradation path is unobservable due to the existence of measurement uncertainty, which interferes with the determination of the degradation model. Besides, the effect of random shocks is usually fluctuating. Given these problems, a general degradation model with the random shock fluctuant effects considering the measurement uncertainty is first developed to describe the degradation process, and a two-step approach combining the arithmetic average filter and the Bayesian information criterion is adopted to identify the degradation path. Subsequently, the transfer processes of the actual degradation state and the abrupt change caused by shocks are depicted using a two-dimensional state-space model, and an expectation-maximization algorithm combined with the particle filtering is developed for parameter estimation. Furthermore, the explicit solution of RUL distribution is obtained when only considering harmful shocks, while a simulation method of RUL distribution is provided when both harmful and beneficial shocks exist. Finally, the effectiveness of the proposed method is verified by a numerical example and two practical case studies.  相似文献   
9.
《Ceramics International》2020,46(6):7288-7297
The effects of two nano– and micro– size classes of hydroxyapatite particles ((Ca10(PO4)6(OH)2), HAp) on the controlled stability behavior of poly(lactic acid) are investigated by chemiluminescence, thermal analysis, water uptake and contact angle measurements. The accelerated degradation was achieved by γ-irradiation, when the two constitutive phases interact at the boundary limit partially blocking oxidation. In this paper we studied and characterized the influence of specific particle areas on various material properties, namely thermal and radiation strengths, water diffusion, and wettability. The better behavior of nanostructured patters is explained by the larger adsorption action and the unlike scavenging interaction between free radicals and filler particles. We also analyzed the interaction between the basic material and filler when the loading concentration is changed. The higher stabilization efficiency of PLA/nHAp systems offered by our present results recommends the selection of nanocomposite hybrids as the suitable composition for the manufacture of long life products including medical wear.  相似文献   
10.
In this work, proton exchange membrane fuel cell cathodes are degraded with accelerated-stress-tests.These PtCo containing cathodes are analyzed at begin-of-life and end-of-test with a dedicated diagnostic procedure. For every individual load point, the oxygen transport resistance and voltage losses due to the formation of platinum oxides were obtained in addition to commonly measured electrochemical surface area, high frequency resistance, as well as cathode ionomer resistance. These data were used to break down the voltage losses into six different contributors. With this break down, performance gains and performance losses were determined at end-of-test. At low current densities, it was found that voltage losses due to degradation are dominated by the loss of specific activity and catalyst surface area - in line with the state-of-the-art knowledge. But by quantifying the losses from platinum oxide formation explicitly, we show that end-of-test an unassigned voltage loss is not only present at highest current densities, but already at low current density. More precisely, the unassigned voltage loss shows a linear increase with decreasing half cell voltage and is independent from the chosen accelerated stress test. As this unassigned loss depends on half cell voltage, it might arise from ionomer adsorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号