首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1347篇
  免费   54篇
  国内免费   52篇
电工技术   8篇
综合类   19篇
化学工业   226篇
金属工艺   348篇
机械仪表   34篇
建筑科学   85篇
矿业工程   15篇
能源动力   74篇
轻工业   25篇
水利工程   7篇
石油天然气   60篇
武器工业   5篇
无线电   98篇
一般工业技术   185篇
冶金工业   40篇
原子能技术   59篇
自动化技术   165篇
  2023年   13篇
  2022年   28篇
  2021年   26篇
  2020年   37篇
  2019年   30篇
  2018年   27篇
  2017年   41篇
  2016年   29篇
  2015年   25篇
  2014年   68篇
  2013年   104篇
  2012年   38篇
  2011年   124篇
  2010年   109篇
  2009年   104篇
  2008年   83篇
  2007年   86篇
  2006年   74篇
  2005年   51篇
  2004年   61篇
  2003年   51篇
  2002年   41篇
  2001年   23篇
  2000年   23篇
  1999年   24篇
  1998年   33篇
  1997年   23篇
  1996年   23篇
  1995年   13篇
  1994年   11篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1986年   6篇
  1985年   1篇
  1984年   2篇
排序方式: 共有1453条查询结果,搜索用时 31 毫秒
1.
Images with hazy scene suffer from low-contrast, which reduces the visible quality of the scene, thus making object detection a more challenging task. Low-contrast can result from foggy weather conditions during image acquisition. Dehazing is a process of removal of haze from the photography of a hazy scene. Single-image dehazing based on dark channel priors are well-known techniques in this field. However, the performance of such techniques is limited to priors or constraints. Moreover, this type of method fails when images have sky-region. So, a method is proposed, which can restore the visibility of hazy images. First, a hazy image is divided into blocks of size 32 × 32, then the score of each block is calculated to select a block having the highest score. Atmospheric light is calculated from the selected block. A new color channel is considered to remove atmospheric scattering, obtained channel value and atmospheric light are then used to calculate the transmission map in the second step. Third, radiance is computed using a transmission map and atmospheric light. The illumination scaling factor is adopted to enhance the quality of a dehazed image in the final step. Experiments are performed on six datasets namely, I-HAZE, O-HAZE, BSDS500, FRIDA, RESIDE dataset and natural images from Google. The proposed method is compared against 11 state-of-the-art methods. The performance is analyzed using fourteen quantitative evaluation metrics. All the results demonstrate that the proposed method outperforms 11 state-of-the-art methods in most of the cases.  相似文献   
2.
Most existing image restoration methods based on deep neural networks are developed for images which only degraded by a single degradation mode and imaging under an ideal condition. They cannot be directly used to restore the images degraded by multi-factor coupling. A complex task decomposition regularization optimization strategy (TDROS) is proposed to solve the problem. The restoration of images degraded by multi-factor coupling is a complex task that can be solved by separating these multiple factors, that is, breaking the complex task into numbers of simpler tasks to make the entire complex problem be overcome more easily. Motivated by this idea, the TDROS decomposes the complex task of image restoration into two sub-task: the potential task constrained by regularization and the main task for reconstructing high-definition images. In TDROS, the front of the neural network is focused on the restoration of images degraded by additive noise, while the other part of the network is focused mainly on the restoration of images degraded by blur. We applied the TDROS to an 11-layer convolutional neural network (CNN) and compared it with initial CNNs from the aspects of restoration accuracy and generalization ability. Based on these results, we used TDROS to design a novel network model for the restoration of atmospheric turbulence-degraded images. The experimental results demonstrate that the proposed TDROS can improve the generalization ability of the existing network more effectively than current popular methods, offering a better solution for the problem of severely degraded image restoration. Moreover, the TDROS concept provides a flexible framework for low-level visual complex tasks and can be easily incorporated into existing CNNs.  相似文献   
3.
Radio-over-free-space-optics (Ro-FSO) technology may pave the way towards a ubiquitous platform for seamless integration of radio and optical networks without expensive optical fiber cabling. In this paper, to increase the capacity of Ro-FSO, mode division multiplexing (MDM) of two modes has been capitalized in a three-channel WDM system spaced by 1 nm over a FSO link of 80 km, resulting in a 120 Gbps six-channel Ro-FSO system. The SNR and received power of MDM of two Laguerre-Gaussian modes LG00 and LG01 is compared with respect to MDM of two transverse donut modes. The performance of four-level quadrature amplitude modulation (QAM) for orthogonal frequency division multiplexing (OFDM) of radio subcarriers in the WDM-MDMs system is investigated for mitigation of frequency-selective fading under strong atmospheric turbulence.  相似文献   
4.
Decomposition of formic acid biomass to generate hydrogen is vital for coping with fossil energy depletion, environmental pollution, and developing clean, efficient, safe, and sustainable modern energy system. In this study, a PdAu/C−C bimetallic catalyst was prepared by the co-impregnation method followed by an atmospheric pressure (AP) cold plasma treatment to synthesize PdAu/C−P catalysts. The resulting PdAu/C−P showed excellent catalytic activity for the formic acid dehydrogenation (FAD) reaction. The total volume of H2 and CO2 released from the FAD reaction was about 375 mL after 4 h at 50 °C, and the initial turnover frequency (TOFinitial) was 808.6 h−1. We used X−ray diffractometry (XRD), temperature programmed reduction (TPR) and high-resolution transmission electron microscopy (HRTEM) to show that plasma can effectively promote the redispersion of Pd−Au particles on the surface of the support. The average particle size of PdAu/C−P (3.5 ± 1.5 nm) was less than PdAu/C−C (4.4 ± 1.9 nm) and uniformly distributed. X-ray photoelectron spectroscopy (XPS), TPR, and HRTEM showed that PdAu/C−P has a higher degree of alloying. In addition, the strong electric field in the plasma facilitated more metal sites located on the outer surface of the support in PdAu/C−P, and the atomic ratio of M/C (M = Pd and Au) (0.0134) was much larger than that of PdAu/C−C (0.0060). The apparent activation energy (Ea) of PdAu/C−P for the FAD reaction was only 27.25 kJ mol−1, and it had much higher activity and stability than the commercial Pd/C (Sigma−Aldrich). The total volume of H2 and CO2 produced over the PdAu/C−P for three cycles was 1.33, 5.87, and 8.56 times that of commercial Pd/C. Overall, the cold plasma enhanced the degree of alloying, promoted the redispersion of agglomerated particles, and regulated the surface enrichment of the active metal components. This is of great significance for guiding the preparation of high−performance multi-metal catalysts by cold plasma.  相似文献   
5.
《Ceramics International》2020,46(14):22774-22780
Ceramic alumina nanofibers were prepared by plasma-assisted calcination (PAC) using atmospheric pressure plasma. Electrospun polyvinyl pyrrolidone/aluminium butoxide fibers were pre-treated by plasma generated in ambient air using a special type of coplanar dielectric barrier discharge. The effect of plasma on fibers and structural, chemical and crystalline properties of obtained ceramic nanofibers were characterized using X-Ray Photoelectron Spectroscopy and Scanning Electron Microscopy, Energy-dispersive X-ray Spectroscopy and X-Ray Diffraction. Thermogravimetric and differential thermal analysis were used for the study of thermal behaviour of untreated and plasma-treated samples. The ceramic fibers prepared by PAC exhibit suitable chemical composition, higher porosity, high length of fibers and better crystalline properties with simultaneous simplifying of the sintering process. The plasma pre-treatment of fibers results in a shortening of following thermal treatment, decrease of the required temperature and excludes a slow temperature increase as prevention of fibrous structure degradation typical in preparation of ceramic fibers by polymer-template techniques.  相似文献   
6.
The oxygen vacancy levels as a factor on different gadolinia-doped ceria interlayer (GDCi) films deposited on yttria stabilized zirconia (YSZ) electrolyte substrates by an atmospheric pressure plasma jet (APPJ) via precursor solution of nitrate salts are investigated. Focusing on the effect of carrier gases, scanning electron microscopy (SEM), Raman, and X-ray diffraction (XRD) are implemented for the materials characterization of the as-deposited GDCi films and sintered-GDCi films at various temperatures. The higher level of oxygen vacancies in GDCi films adhered on 8YSZ electrolyte are evidently analyzed using Ar as the carrier gas during the deposition, of which the interdiffusion resulted in the formation of (GDC + YSZ) solid solution for sintering over 1300?°C degraded the total conductivity. The deposition of GDCi films on 8YSZ by APPJ method using O2 carrier gas significantly improved the total conductivities of the whole electrolyte layers. Moreover, this study provides the useful insight into the oxygen vacancy levels on GDC films as interlayer (GDCi) to improve the values of open circuit voltage in LSM/GDCi/YSZ/Pt full-cell, as well as offering the efficiency of APPJ as one step deposition process.  相似文献   
7.
As indispensable strategic materials for high-tech industries, rare earth elements and yttrium (REY) have become particularly important in recent years, raising the demand of developing new approaches for reclamation of REY from REY-rich materials such as coal combustion products (CCPs). In this study, five coal-fired power plants (CFPPs) in Guizhou of southwest China were selected for investigating REY concentrations of solid samples, atmospheric emissions, and recovery potentials. REY concentrations of feed fuels are higher in this study (147.2–468.6 mg/kg) than what have been reported previously for coals in China and the world. REY atmospheric emissions are extremely low (38.70–180.11 mg REY/t coal). REY are enriched in bottom ash and fly ash, with average of 658 ± 296 mg/kg and maximum of 1257 mg/kg from the five CFPPs. Relative enrichment factors (REF) of REY in bottom ash and fly ash compared with the feed fuel are 0.86–1.02 and 0.91–1.04, respectively. REY concentrations in desulfurized gypsum are very low (6–17 mg/kg), and that is mostly inherited from limestone. Critical REY (Nd, Eu, Tb, Dy, Y, and Er) in bottom/fly ash account for 34%–39% of the total REY and the outlook coefficients (Coutl) are in the range of 0.89–1.11. This study indicates a promising prospect to reclaim REY from REY-rich CCPs (bottom and fly ash) in CFPPs in Guizhou, especially in the central-north Guizhou, although such practices require further technology advancement.  相似文献   
8.
《Ceramics International》2020,46(15):23417-23426
Yttria stabilized hafnia (Hf0.84Y0.16O1.92, YSH16) coatings were sprayed by atmospheric plasma spraying (APS). The effects of thermal aging at 1400 °C on the microstructures, mechanical properties and thermal conductivity of the coatings were studied. The results show that the as-sprayed coating was composed of the cubic phase, and the nano-sized monoclinic (M) phase was precipitated in the annealed coating. The presence of M phase effectively constrained the sintering of the coating due to its superior sintering-resistance. The Young's modulus kept at a nearly same level of ~78 GPa even after annealing, and the coating annealed for 6 h yielded a maximum value of hardness but revealed a declining tendency in the Vicker's hardness with prolonged sintering time. The thermal conductivity increased from 0.8-0.95 W m-1 K-1 at as-sprayed state to 1.6 W m-1 K-1 after annealing at 1400 °C for 96 h. The dual-phase coating is promising to serve at temperatures above 1400 °C due to its excellent thermal stability and mechanical properties.  相似文献   
9.
Thermal barrier coatings (TBCs) play a pivotal role in protecting the hot structures of modern turbine engines in aerospace as well as utility applications. To meet the increasing efficiency of gas turbine technology, worldwide research is focused on designing new architecture of TBCs. These TBCs are mainly fabricated by atmospheric plasma spraying (APS) as it is more economical over the electron beam physical vapor deposition (EB-PVD) technology. Notably, bi-layered, multi-layered and functionally graded TBC structures are recognized as favorable designs to obtain adequate coating performance and durability. In this regard, an attempt has been made in this article to highlight the structure, characteristics, limitations and future prospects of bi-layered, multi-layered and functionally graded TBC systems fabricated using plasma spraying and its allied techniques like suspension plasma spray (SPS), solution precursor plasma spray (SPPS) and plasma spray –physical vapor deposition (PS-PVD).  相似文献   
10.
Protective coatings from diethylphosphatoethyltriethoxysilane (DEPETS) have been deposited on different polymer substrates in a plasma discharge operated at atmospheric pressure. Plasma polymer chemistry and structure were characterized by means of Fourier transform infrared spectroscopy (FTIR), laser desorption ionization-mass spectrometry (LDI-MS), nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). A chemical structure of the plasma polymer has been proposed based on the coating molecular characterization. Coatings were deposited on polycarbonate (PC) and polyamide 6 (PA6) substrates. The flame retardant properties of coated substrate samples were assessed using cone calorimetry and compared to those of bare substrates. A significant increase in the time to ignition (TTI), up to +143%, was recorded after coating deposition due to the formation of a high-performance barrier layer at the surface of both polymer substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号