首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   746篇
  免费   67篇
  国内免费   42篇
电工技术   93篇
综合类   46篇
化学工业   234篇
金属工艺   36篇
机械仪表   18篇
建筑科学   8篇
矿业工程   5篇
能源动力   3篇
轻工业   7篇
水利工程   2篇
石油天然气   5篇
武器工业   10篇
无线电   186篇
一般工业技术   154篇
冶金工业   11篇
原子能技术   2篇
自动化技术   35篇
  2024年   4篇
  2023年   20篇
  2022年   31篇
  2021年   28篇
  2020年   40篇
  2019年   35篇
  2018年   26篇
  2017年   36篇
  2016年   25篇
  2015年   25篇
  2014年   25篇
  2013年   66篇
  2012年   38篇
  2011年   48篇
  2010年   38篇
  2009年   44篇
  2008年   37篇
  2007年   49篇
  2006年   53篇
  2005年   23篇
  2004年   35篇
  2003年   21篇
  2002年   19篇
  2001年   18篇
  2000年   16篇
  1999年   11篇
  1998年   6篇
  1997年   6篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1986年   3篇
  1985年   2篇
  1983年   2篇
排序方式: 共有855条查询结果,搜索用时 24 毫秒
1.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
2.
A few compositions of the system Sr2Mn1-xSnxO4 (x = 0.0, 0.3, 0.5) were synthesized in the air by the solid-state ceramic route. A change in the sign (positive to negative) of the permittivity above a particular temperature (TC) is observed at all the measured frequencies. The negative permittivity was analyzed by the Drude-Lorentz model. It was found that negative permittivity is caused by the plasma oscillations of thermally excited free charge carriers. Analysis of XPS spectra confirmed the presence of mixed-valence states of both Mn (Mn4+ and Mn3+) and Sn (Sn4+ and Sn2+) ions. The UV–vis.-IR spectroscopy results indicated generation of a large number of defect states in the forbidden bandgap region of Sr2MnO4 on the substitution of Sn at Mn site. Synthesized samples are promising metamaterials for radio frequency (10 Hz -2 MHz) region applications due to the high-temperature plasmonic behavior.  相似文献   
3.
LiCuNb3O9 has been reported newly a colossal permittivity (CP) perovskite, in which the B-site NbO6 octahedra play a bridging role in the polaron hopping. However, how the A-site modification affects the origin of the polarons and further the CP behaviours remains unexplored. To this end, A-site Ca2+ was incorporated to form Li1-xCaxCuNb3O9, and the local states, dielectric relaxations and conduction behaviours were comprehensively studied. The substitution induces the polyvalent Cu cations, i.e. Cu+/Cu2+/Cu3+. Bond valence sum calculations imply that Cu2+ and Cu3+ are underbonded, and Cu+ is overbonded, while B-site Nb5+ shows slightly different with theoretical pentavalence. All the compositions exhibit a similarly room-temperature CP response, but present two dielectric relaxations, i.e. TR1:170–300 K and TR2:260–400 K. Comprehensive investigations on universal dielectric response and bulk dc conductivity indicate that the TR1 follows the variable-range-hopping where the electron hopping between the mixed Cu+/Cu2+, while TR2 contributes from the Cu3+ nearest neighbor hopping.  相似文献   
4.
《Ceramics International》2021,47(24):33988-33996
Hafnia (HfO2, hafnium dioxide) is a wide band gap and high-κ material, and the metastable cubic hafnia has a much higher permittivity compared with the normal monoclinic hafnia. Here, we employ a one-step process, the pulsed plasma in liquid (PPL) method to synthesize two types of hafnia nanoparticles (NPs): one which is mainly in cubic phase (cubic: 81.7 at%, monoclinic: 18.3 at%) and the other which is in monoclinic phase. High-resolution transmission electron microscopy images showed that the particles were small (particle size ~3 nm). X-ray absorption fine structure analysis showed no chemical shifts, indicating that the synthetic hafnia NPs contained no oxygen vacancy. The synthetic hafnia NPs mainly in cubic phase showed a much higher relative permittivity than that of the commercial hafnia (monoclinic), and have a larger band gap than the synthetic monoclinic hafnia NPs.  相似文献   
5.
With this contribution,as a comment to the publication in Journal of Mate rials Science&Technology 44(2020)54,reporting giant dielectric response,structural characterization and numerical simulations in Sr_(1-1.5 x)Bi_xTiO3ceramics,we show that the re ported results are rather contradicting and not well analysed,while the suggested mechanism for the giant permittivity response is not valid or doubtful and has to be reconsidered.Moreover,many details and data are missing making impossible not only to call the obtained results very suitable for practical application but even to reproduce them.  相似文献   
6.
We investigate the effects of doping and annealing on the dielectric properties of metal ions doped TiO2 ceramics. Colossal permittivity (CP) above 104 was observed in single Nb ion doped TiO2, which was dominated by electron transport related interfacial polarization. Moreover, the CP can be dropped to 120 when simultaneously introducing Mn ion into the sample. The disappearance of CP behaviors maybe due to the multivalence of Mn which would inhibit the reduction of Ti4+ to Ti3+, and thus reduce delocalized electrons. Interestingly, the CP was recovered for the (Nb+Mn) co-doped TiO2 after post-sintering heat treatment in N2 atmosphere. The recovery of CP in the sample after annealing can be ascribed to the semiconducting grain and the insulating grain boundary, according to impedance spectroscopy. We therefore believe that this work can help us understand the mechanism of CP from a new perspective.  相似文献   
7.
The appearance of colossal permittivity materials broadened the choice of materials for energy-storage applications. In this work, colossal permittivity in ceramics of TiO2 co-doped with niobium and europium ions ((Eu0.5Nb0.5)xTi1-xO2 ceramics) was reported. A large permittivity (εr ~ 2.01?×?105) and a low dielectric loss (tanδ ~ 0.095) were observed for (Eu0.5Nb0.5)xTi1-xO2 (x?=?1%) ceramics at 1?kHz. Moreover, two significant relaxations were observed in the temperature dependence of dielectric properties for (Eu, Nb) co-doped TiO2 ceramics, which originated from defect dipoles and electron hopping, respectively. The low dielectric loss and high relative permittivity were ascribed to the electron-pinned defect-dipoles and electrons hopping. The (Eu0.5Nb0.5)xTi1-xO2 ceramic with great colossal permittivity is one of the most promising candidates for high-energy density storage applications.  相似文献   
8.
Fe doped BaTiO3 ceramics with giant permittivity and low dielectric loss were synthesized in N2/H2 atmosphere started with BaTiO3 powders and iron powders. XRD analysis exhibited the tetragonal-pseudocubic phase transition when the Fe content is 3 mol%. XPS spectra confirmed the iron oxides with mixed-valence structure of Fe2+/Fe3+, while Ti-ions maintain Ti4+3d0 states without any oxidization-reduction. For the case of ceramics with 5 mol% Fe, the dielectric constant was 66,650 at 1000 Hz at room temperature, 19 times higher than that of pure BaTiO3 ceramics, while the dielectric loss tangent was 0.13. Comparison with other giant-permittivity materials demonstrated the superior potential of present ceramics. First-principles calculations investigated the interfacial interaction of Fe-[TiO2] interface and Fe-[BaO] interface. Giant dielectric constant was induced by the interfacial polarization between insulating ferroelectrics and semiconducting iron oxides with mixed-valence states, as well as the contribution from the generated electron hopping conduction.  相似文献   
9.
Two low-permittivity dielectric materials Li2AGeO4 (A?=?Zn, Mg) were prepared via the solid-state reaction method. X-ray diffraction analysis and Rietveld refinement indicated that both ceramics crystallize in an orthorhombic olivine structure with a space group Pmn21. Dense ceramics with high relative density and homogeneous microstructure were obtained. Li2ZnGeO4 densified at 1200?°C possessed a relative permittivity εr?=?6.5, a quality factor Q?×?f?=?35,400?GHz, and a temperature coefficient of resonant frequency. Li2MgGeO4 exhibited εr?=?6.1, Q?×?f?=?28,500?GHz, and τf?=?–74.7?ppm/°C when sintered at 1220?°C. Additionally, the large negative τf values of Li2AGeO4 (A?=?Zn, Mg) ceramics were successfully adjusted compensated by forming composite ceramics with CaTiO3 and near-zero τf values of +2.9?ppm/°C and +5.8?ppm/°C were achieved in 0.92Li2ZnGeO4-0.08CaTiO3 and 0.90Li2MgGeO4-0.10CaTiO3, respectively.  相似文献   
10.
《Ceramics International》2020,46(8):12059-12066
(A, B) co-doped TiO2 ceramics attract great interests due to the excellent dielectric properties. In this work, the (A, Ta) co-doped TiO2 ceramics were prepared by a solid state reaction process. The effect of the acceptors ionic radius on the structure and properties of TiO2 ceramics was investigated. According to XRD analysis, the main phase is rutile TiO2 for all samples. Due to the larger ionic radius, it is hard to replace Ti site in TiO6 octahedron. As a result, the content of the secondary phase increased with increasing ionic radius. The dielectric properties were significantly enhanced by co-doping of alkaline-earth ions and tantalum ions, and the best dielectric constant obtained at 3% (Sr, Ta) co-doped compositions, where ε’ = 2.1 × 105, tanδ = 0.21. Meanwhile, the XPS analysis suggested that the concentration of the defect dipoles exhibit a maximum in Sr-doped TiO2 ceramics. The larger ionic radius of the acceptors leads to the more stability of the defect structure. However, for Ba ions, the replacement concentration decreased due to the excessive ionic radius, which in turn reduces the defect concentration. This work is meaningful for the further investigations on TiO2-based colossal permittivity materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号