首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3910篇
  免费   50篇
  国内免费   123篇
电工技术   41篇
综合类   69篇
化学工业   1345篇
金属工艺   319篇
机械仪表   66篇
建筑科学   80篇
矿业工程   16篇
能源动力   377篇
轻工业   162篇
水利工程   5篇
石油天然气   75篇
武器工业   3篇
无线电   257篇
一般工业技术   697篇
冶金工业   93篇
原子能技术   126篇
自动化技术   352篇
  2024年   1篇
  2023年   48篇
  2022年   63篇
  2021年   86篇
  2020年   65篇
  2019年   64篇
  2018年   68篇
  2017年   98篇
  2016年   81篇
  2015年   75篇
  2014年   173篇
  2013年   322篇
  2012年   169篇
  2011年   317篇
  2010年   213篇
  2009年   272篇
  2008年   223篇
  2007年   228篇
  2006年   196篇
  2005年   180篇
  2004年   169篇
  2003年   181篇
  2002年   142篇
  2001年   67篇
  2000年   57篇
  1999年   75篇
  1998年   77篇
  1997年   53篇
  1996年   47篇
  1995年   48篇
  1994年   33篇
  1993年   23篇
  1992年   24篇
  1991年   24篇
  1990年   14篇
  1989年   22篇
  1988年   17篇
  1987年   13篇
  1986年   6篇
  1985年   8篇
  1984年   10篇
  1983年   3篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1977年   5篇
  1976年   2篇
  1975年   5篇
排序方式: 共有4083条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(9):11962-11970
The reaction between sulfur and iron under high pressure and high temperature (HPHT) was studied. Sulfur–iron reaction models under different pressure levels were constructed. The morphology and formation mechanism of the reactants were comprehensively analyzed by scanning electron microscopy, energy-dispersive spectroscopy–line scanning, metallographic microscopy, and Raman spectroscopy. The results indicated that the pressure of the reaction could significantly affect the diffusion behavior of sulfur and iron during the reaction. With an increase in pressure, the diffusion of iron in the system was inhibited, whereas that of sulfur was enhanced. The pressure distribution gradient at the reaction interface was simulated by finite element calculation. The effect of pressure gradient as the driving force of the reaction on the diffusion behavior of elements was evaluated by thermodynamics combined with experimental results. Based on the experimental results, finite element simulation, and formula derivation, a new standpoint was proposed: the diffusion of substances in the HPHT system was affected by the pressure gradient at the interface.  相似文献   
2.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
3.
张亚洲  卢先领 《计算机应用》2020,40(5):1545-1552
针对液晶屏(LCD)导光板表面缺陷检测方法存在漏检率和误检率较高,对产品表面复杂渐变的纹理结构适应性差的问题,提出一种基于改进相干增强扩散(ICED)与纹理能量测度和高斯混合模型(TEM-GMM)的LCD导光板表面缺陷检测方法。首先,构建ICED模型,基于结构张量引入平均曲率流扩散(MCF)滤波,使得相干增强扩散(CED)模型对缺陷的细线状纹理有良好的边缘保持效果,并利用相干性得到缺陷纹理增强和背景纹理抑制的滤波后图像;然后,根据Laws纹理能量测度(TEM)提取图像纹理特征,将图像的背景纹理特征作为离线阶段高斯混合模型(GMM)的训练数据,使用期望最大化(EM)算法估计GMM参数;最后,计算待检测图像各像素的后验概率,并将其作为在线检测阶段缺陷像素的判断依据。实验结果表明,该检测方法在导光颗粒随机、规则两种分布的缺陷图像测试数据组上的漏检率和误检率分别为3.27%、4.32%和3.59%、4.87%。所提检测方法适用范围广,可有效检测出LCD导光板表面划痕、异物、脏污和压伤等类型的缺陷。  相似文献   
4.
本文主要研究了Mg-40Al与Mg-20Ce固液界面在475°C, 500°C和525°C下保温5min至30min的界面反应和扩散层的生长动力学。结果发现,在扩散层中由于Al元素和Ce元素反应生成Al11Ce3, Al3Ce and Al2Ce金属化合物。金属化合物的体积分数随着扩散温度的升高而增加。扩散层的生长满足抛物线生长规律,扩散层的扩散激活能为42±3.7kJ/mol。实验研究的固液扩散为理解合金熔炼过程中金属化合物的形成提供了理论基础。  相似文献   
5.
The parameters governing the crystallisation of paracetamol using various conventional techniques has been extensively studied, however the factors influencing the drug crystallisation using spray drying is not as well understood. The aim of this work was to investigate the crystallisation of an active pharmaceutical ingredient through evaporative crystallisation using a spray dryer to study the physicochemical properties of the drug and to use semi-empirical equations to gain insight into the morphology and particle size of the dried powder. Paracetamol solutions were spray dried at various inlet temperatures ranging from 60 °C to 120 °C and also from a series of inlet feed solvent compositions ranging from 50/50% v/v ethanol/water to 100% ethanol and solid-state characterisation was done. The size and morphology of the dried materials were altered with a change in spray drying parameters, with an increase in inlet temperature leading to an increase in particle Sauter mean diameter (from 3.0 to 4.4 µm) and a decrease in the particle size with an increase in ethanol concentration in the feed (from 4.6 to 4.4 µm) as a result of changes in particle density and atomised droplet size. The morphology of the dried particles consisted of agglomerates of individual crystallites bound together into larger semi-spherical agglomerates with a higher tendency for particles having crystalline ridges to form at higher ethanol concentrations of the feed.  相似文献   
6.
In this study, analytical solution for degradable organic contaminant transport through a composite liner consisting of a geomembrane (GMB) layer, a geosynthetic clay liner (GCL) and an attenuation layer (AL) is derived by the separation of variables method. The transient contaminant transport in the whole composite liner can be well described avoiding some weird phenomena in existing analytical solutions. The results of parametric study show that GCL has significant effect on improving the barrier efficiency especially for scenarios with high leachate head. The biodegradation and adsorption in GCL have significant influence on the contaminant transport through the composite liner when the half-life of contaminant in GCL is less than 5 years. Otherwise, the effect can be neglected.  相似文献   
7.
During a metal cutting process, chemical wear can become the dominant mechanism of tool degradation under the high temperatures and contact pressures that arise between the tool and the metal workpiece. This study focuses on the chemical and diffusional interactions between superalloy Inconel 718 and cubic boron nitride (cBN) tool material with and without TiC binder. It covers thermodynamic modeling and experimental tests in the pressure range of 0.1 Pa to 2.5 GPa at temperatures up to 1600 °C. The methods used include diffusion couples under both vacuum and high pressure, transmission electron microscopy (TEM) analysis and in-situ synchrotron observations. It is shown that cBN is prone to diffusional dissolution in the metal and to reactions with niobium, molybdenum, and chromium from Inconel 718. Adding TiC binder changes the overall degradation process because it is less susceptible to these interaction mechanisms.  相似文献   
8.
MoSi2-B4C coatings with different B4C contents were prepared on Nb alloy by spark plasma sintering (SPS) process. Powder mixtures of Mo, Si and B4C were used as the coating starting materials. Besides MoSi2 and B4C phases, small amounts of SiC and MoB are also found in the coatings because of the reactions of Mo, Si and B4C powders during sintering. Compared with single MoSi2 coating, the MoSi2-B4C coatings show better oxidation resistance at 1450?℃, and dense B2O3-SiO2 oxide scales form after 100?h oxidation. The B4C or MoB in the MoSi2-B4C coatings can serve as the B donor for the formation of B2O3. A slight degradation in the microstructure of the MoSi2-B4C coatings after oxidation is observed, which can be attributed to the presence of an NbB layer in the inter-diffusion zone of the coatings that retards the inward diffusion of Si from the coating into the substrate alloy. The microstructure development and oxidation behavior of the MoSi2-B4C coatings have been discussed.  相似文献   
9.
Diffusion behaviors in Mg–Sc hcp and bcc solid solutions between 773 and 873 K were investigated using both single-phase and multi-phase diffusion couple techniques. The EPMA detected composition-distance profiles were smoothed and fitted using the error function expansion (ERFEX). The interdiffusion coefficients were extracted using Sauer–Freise integral. The interdiffusion coefficients in hcp phase showed a slightly parabolic composition dependence at the Mg-rich part and the maximum value was around 2–3 at. % Sc. However, the interdiffusion coefficients in the bcc phase monotonously decreased with the increase of solubility of Sc. The determined inter- and impurity diffusion coefficients in the hcp Mg–Sc alloys were assessed to develop the atomic mobility database, and their validity was justified by reproducing the composition profiles and diffusion fluxes obtained in this diffusion couple experiment. Meanwhile, the development of bcc atomic mobility was realized via the Maclaurin approximation, extrapolation, and optimization. The results make up for the missing data of Mg–Sc diffusion kinetics.  相似文献   
10.
To understand the hydrogen (H) behavior in the carbide precipitates, the dissolution and diffusion properties of interstitial H in the transition metal carbide (TMC; TM = Hf, Nb, Ta, Ti, V, and Zr) were studied by first-principles calculations. In these carbides, it can be seen that H tends to occupy the trigonal site (tri2-site) surrounded by three transition metal atoms and one carbon atom rather than the face center (fc-site) and the body center (bc-site) which with the larger space. We found that the bonding interaction between H atom and the nearest-neighbor (1NN) carbon atom is the dominant influence on the stability of H dissolution. Besides, we obtained the temperature-dependent solubility and diffusion coefficients of H in TMC and pure vanadium through Sievert's law and transition state theory. Compared with pure vanadium, H shows the worse solubility in TMC, and it is more difficult for hydrogen to migrate in TMC, but segregate toward the interface. Furthermore, it is interesting to note that, the diffusion barrier and the H solution energy show a linear relationship for transition metal carbides in the same period. These results can help us deepen the understanding of H behavior in vanadium alloys strengthened by carbide precipitates, and furtherly providing the theoretical guidance for the design of alloys with excellent performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号