首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3949篇
  免费   27篇
  国内免费   37篇
电工技术   5篇
综合类   54篇
化学工业   2673篇
金属工艺   65篇
机械仪表   24篇
建筑科学   23篇
矿业工程   3篇
能源动力   284篇
轻工业   68篇
水利工程   2篇
石油天然气   19篇
无线电   176篇
一般工业技术   514篇
冶金工业   12篇
原子能技术   45篇
自动化技术   46篇
  2023年   12篇
  2022年   19篇
  2021年   45篇
  2020年   37篇
  2019年   45篇
  2018年   41篇
  2017年   57篇
  2016年   45篇
  2015年   68篇
  2014年   204篇
  2013年   326篇
  2012年   161篇
  2011年   300篇
  2010年   236篇
  2009年   288篇
  2008年   258篇
  2007年   306篇
  2006年   279篇
  2005年   301篇
  2004年   215篇
  2003年   223篇
  2002年   166篇
  2001年   45篇
  2000年   48篇
  1999年   54篇
  1998年   33篇
  1997年   20篇
  1996年   39篇
  1995年   19篇
  1994年   31篇
  1993年   13篇
  1992年   6篇
  1991年   9篇
  1990年   4篇
  1989年   4篇
  1988年   10篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   5篇
  1983年   19篇
  1982年   14篇
排序方式: 共有4013条查询结果,搜索用时 15 毫秒
1.
In our previous work, phosphorylated chitosan was modified through polymer blending with poly(vinyl alcohol) (PVA) polymer to produce N-methylene phosphonic chitosan/poly(vinyl alcohol) (NMPC/PVA) composite membranes. The aim of this work is to further investigate the effects of a propylammonium nitrate (PAN) ionic liquid and/or silicon dioxide (SiO2) filler on the morphology and physical properties of NMPC/PVA composite membranes. The temperature-dependent ionic conductivity of the composite membranes with various ionic liquid and filler compositions was studied by varying the loading of PAN ionic liquid and SiO2-PAN filler in the range of 5–20 wt%. As the loading of PAN ionic liquid increased in the NMPC/PVA membrane matrix, the ionic conductivity value also increased with the highest value of 0.53 × 10?3 S cm?1 at 25 °C and increased to 1.54 × 10?3 S cm?1 at 100 °C with 20 wt% PAN. The NMPC/PVA-PAN (20 wt%) composite membrane also exhibited the highest water uptake and ion exchange capacity, with values of 60.5% and 0.60 mequiv g?1, respectively. In addition, in the single-cell performance test, the NMPC/PVA-PAN (20 wt%) composite membrane displayed a maximum power density, which was increased by approximately 14% compared to the NMPC/PVA composite membrane with 5 wt% SiO2-PAN. This work demonstrated that modified NMPC/PVA composite membranes with ionic liquid PAN and/or SiO2 filler showed enhanced performance compared with unmodified NMPC/PVA composite membranes for proton exchange membrane fuel cells.  相似文献   
2.
In this paper, Pt nanoparticles (Pt NPs) deposited hybrid carbon support is prepared by modifying double-layered hollow carbon spheres(DLHCs)with poly(3,4-ethylenedioxythiophene) (PEDOT) and used as anode catalyst of methanol oxidation. The structure of nanocomposites is characterized by SEM, TEM, FT-IR, XRD and XPS, confirming the greatly enhanced synergistic effect between the PEDOT and DLHCs, and illustrating the uniform distribution of Pt NPs on the PEDOT/DLHCs composite surface with a small particle size (~2.63 nm). Cyclic voltammetry, chronoamperometry and impedance spectroscopy applied to determine the electrocatalytic activity of catalysts, it is found that the synthesized PEDOT/DLHCs/Pt possesses excellent characteristics such as large electrochemically active surface area and high mass activity of 59.45 m2 g−1 and 807 mA mg−1 in 0.5 M H2SO4 containing 1 M methanol solution, which is almost 1.24 and 2.8 times greater than those of commercial Pt/C, and the catalyst exhibits superior stability after 500 durability cycles. The enhanced electrocatalytic behavior can be ascribed to the excellent electronic conductivity of PEDOT-modified DLHCs and the strong binding of PEDOT/DLHCs to Pt NPs, suggesting that the PEDOT/DLHCs/Pt is a promising electrocatalyst for direct methanol fuel cell.  相似文献   
3.
A highly durable proton exchange membranes (PEM)s based on covalently supported ionic liquid (IL) bearing sulfonic acid imidazolium groups were successfully fabricated. The membrane preparation involved radiation induced grafting of 1-vinyl imidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) film, followed by covalent immobilization of 3-sulfopropyl and subsequent treatment with trifluoromethanesulfonic acid. The ionic conductivity of the supported IL membranes was increased with the increase in the concentration of IL and reached a maximum value of 138 mS cm−1 in a fully hydrated state with an ion exchange capacity of 4.82 mmol g−1 that is higher than Nafion with a similar thickness. The membranes displayed excellent chemical and mechanical stability. In addition, the dimensional and thermal stability of supported IL-membranes were significantly higher than commercial Nafion membranes.  相似文献   
4.
In this work, a cross-linked sheet structured conducting polymer ploy(3,4-ethylenedioxythiophene) (PEDOT) decorated on Ni foam is synthesized via one-step electrodeposition using the sodium p-toluenesulfonate (STSA) as surfactant and applied for supercapacitor electrode. The surfactants play a vital role in controlling the morphologies of PEDOT leading to the electrochemical performance difference. The optimized PEDOT electrode exhibits the highest capacitance of 711.6 mF cm−2 at 3.0 mA cm−2 in the three-electrode system. An asymmetric device (PEDOT/STSA//AC) is constructed by PEDOT/STSA (the positive electrode), activated carbon (AC) (the negative electrode) as well as 1 M Na2SO4 (the electrolyte). The device has been worked in a high-voltage range of 0–1.5 V, which displays the satisfied energy density of 14.0 Wh·kg−1 at 535.5 W kg−1. Furthermore, the PEDOT/STSA//AC device presents excellent rate capability and long-time cyclic stability.  相似文献   
5.
《Ceramics International》2020,46(13):21275-21283
In this work, a poly(ethylene glycol)-b-poly(1H,1H,7H-dodecafluoroheptyl methacrylate) (PEG-b-PDFMA) block copolymer was first synthesized by the reversible addition−fragmentation chain transfer (RAFT) polymerization. Then a novel facile approach was developed to fabricate oval cuboid TiO2 particles with mesoporous structure by using the PEG-b-PDFMA block copolymer as a template and titanium tetrabutoxide (TBOT) as a precursor, followed by evaporation-induced self-assembly (EISA) process and calcination process. The results show that the PEG-b-PDFMA block copolymer can control the oriented assembly of nanoparticles and act as templates for the formation of a mesopore. It is found that the mass ratio of TBOT/PEG-b-PDFMA and water content in the solution have a significant influence on the morphology of TiO2 particles. When the mass ratio of TBOT/PEG-b-PDFMA is 0.25/1, oval cuboid TiO2 particles with mesopores are obtained, which exhibits a high photocatalytic activity for the degradation of methylene blue (MB) dye under UV light irradiation.  相似文献   
6.
7.
采用双螺杆挤出机将甲基丙烯酸缩水甘油酯(GMA)接枝到聚乳酸(PLA)上,而后将接枝产物(PLA-g-GMA)与聚乳酸(PLA)、聚碳酸亚丙酯(PPC)反应性共混,考察了接枝物中GMA加入量变化对PLA/PPC/PLA-g-GMA共混体系的力学性能、热稳定性能的影响,并对共混体系的断裂机理进行了研究。结果表明,PLA-g-GMA的引入能够在一定程度上改善PLA与PPC的相容性。随着接枝物中GMA加入量的增加,共混物的冲击强度、断裂伸长率及拉伸强度均呈现出先升高后降低的趋势,并在接枝物中GMA加入量为3%时达到最大值。扫描电镜结果显示,PLA-g-GMA引入后共混物的韧性断裂特征越发显著,其冲击断裂方式由脆性断裂过渡为韧性断裂。热失重分析结果显示,加入PLA-g-GMA后共混物的起始分解温度和完全分解温度均有一定程度的提高。  相似文献   
8.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   
9.
The glassy carbon electrode is modified by poly(brilliant cresyl blue) (PBCB) to be applied as a new green and efficient platform for Pt and Pt–Ru alloy nanoparticles deposition. Surface composition, morphology and catalytic activity of these modified electrodes towards methanol oxidation are assessed by applying X-ray diffraction, field emission scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy techniques. The X-ray diffraction patterns reveal that the highly crystalline Pt and Pt–Ru alloy and RuO2 nanoparticles with low crystallinity are deposited on the PBCB modified glassy carbon electrodes. The microscopic images indicate smaller size and better distribution of deposited nanoparticles on the surface of PBCB modified electrodes. Cyclic voltammetry and electrochemical impedance spectroscopy results reveal that PBCB supported Pt and Pt–Ru nanoparticles have better electrocatalytic performance and durability towards methanol oxidation rather than the unsupported nanoparticles. From the obtained results it can be concluded that the presence of PBCB not only improves the stability of nanoparticles on the surface, but also leads to the formation of smaller size and more uniform distribution of nanoparticles on the surface, which, in turn, cause the nanoparticles to provide a higher accessible surface area and more active centers for the oxidation of methanol. The results will be valuable in extending the applications of this polymer in surface modification steps and in developing promising catalyst supports to be applied in direct methanol fuel cells.  相似文献   
10.
We compare the current density–voltage (JV) and magnetoconductance (MC) response of a poly(3-hexyl-thiophene) (P3HT) device (Au/P3HT(350 nm)/Al) before and after annealing above the glass transition temperature of 150 °C under vacuum. There is a decrease of more than 3 orders of magnitude in current density due to an increase of the charge injection barriers after de-doping through annealing. An increase, approaching 1 order of magnitude, in the negative MC response after annealing can be explained by a shift in the Fermi level due to de-doping, according to the bipolaron mechanism. We successfully tune the charge injection barrier through re-doping by photo-oxidation. This leads to the charge injection and transport transitioning from unipolar to ambipolar, as the bias increases, and we model the MC response using a combination of bipolaron and triplet-polaron interaction mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号