首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   225篇
  国内免费   4篇
电工技术   2篇
综合类   8篇
化学工业   411篇
金属工艺   10篇
机械仪表   2篇
矿业工程   1篇
能源动力   6篇
轻工业   1篇
无线电   52篇
一般工业技术   147篇
自动化技术   3篇
  2023年   1篇
  2022年   2篇
  2021年   62篇
  2020年   35篇
  2019年   17篇
  2018年   43篇
  2017年   47篇
  2016年   46篇
  2015年   67篇
  2014年   62篇
  2013年   72篇
  2012年   16篇
  2011年   13篇
  2010年   20篇
  2009年   15篇
  2008年   19篇
  2007年   16篇
  2006年   11篇
  2005年   16篇
  2004年   10篇
  2003年   4篇
  2002年   10篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   1篇
  1992年   2篇
排序方式: 共有643条查询结果,搜索用时 15 毫秒
1.
Fullerenes are candidates for theranostic applications because of their high photodynamic activity and intrinsic multimodal imaging contrast. However, fullerenes suffer from low solubility in aqueous media, poor biocompatibility, cell toxicity, and a tendency to aggregate. C70@lysozyme is introduced herein as a novel bioconjugate that is harmless to a cellular environment, yet is also photoactive and has excellent optical and optoacoustic contrast for tracking cellular uptake and intracellular localization. The formation, water-solubility, photoactivity, and unperturbed structure of C70@lysozyme are confirmed using UV-visible and 2D 1H, 15N NMR spectroscopy. The excellent imaging contrast of C70@lysozyme in optoacoustic and third harmonic generation microscopy is exploited to monitor its uptake in HeLa cells and lysosomal trafficking. Last, the photoactivity of C70@lysozyme and its ability to initiate cell death by means of singlet oxygen (1O2) production upon exposure to low levels of white light irradiation is demonstrated. This study introduces C70@lysozyme and other fullerene-protein conjugates as potential candidates for theranostic applications.  相似文献   
2.
Here, we report a facile approach to electrostatically couple the surface charges of graphite nanoplate (GNP) fillers and poly(methyl methacrylate) (PMMA) polymer particles using ethylene maleic anhydride (EMA) copolymer as an electrostatic coupling agent. Our strategy involved switching the intrinsic repulsive electrostatic interactions between the directly exfoliated GNPs fillers and the PMMA particles to attractive electrostatic surface interactions for preparing core(PMMA)-shell (GNP) precursor in order to optimizing 3-dimensionally dispersed polymer nanocomposite. As a result, the electrical conductivity of the composites dramatically increased by a factor of 16.7 in the EMA-coupled GNP/PMMA composites compared with that of the EMA-free GNP/PMMA composites. In addition, the percolation threshold was also notably reduced from 0.32 to 0.159 vol% after electrostatic coupling of the GNPs fillers and PMMA particles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48390.  相似文献   
3.
With the discovery of solid C60, efforts are being made to develop new clusters and molecules which could be assembled to form new materials. Here we present some recent developments in this direction and discuss bonding in such materials.  相似文献   
4.
Utilization of polyhydroxylated C60 (fullerenols) in a condensation reaction with diisocyanated oligo(tetramethylene oxide) led to the successful fabrication of elastomeric poly (urethane-ether) networks. These polymer networks exhibit interesting thermal behavior at low temperatures, improved tensile strength and elongation at ambient temperatures, and enhanced thermal mechanical stability at high temperatures, as compared with those of the parent linear polyurethane analogues; or with the conventional oligo (tetramethylene oxide)-derived polyurethane elastomers cross-linked by trihydroxylated reagents (1,I,1-trismethylol propane) or tetrahydroxylated reagents (pentaerythritol). The presence of a limited quantity of water molecules in the condensation reaction of fullerenols with diisocyanated prepolymers modified the physical properties of the resulting elastomeric products with a notable increase in tensile strength, modulus, and Ts over those of elasotmers prepared under anhydrous conditions. These water molecules contributed effectively to the increase of the number of cross-linking centers during the reaction.  相似文献   
5.
综述了碳的第三种同素异形体──球状碳单质分子的发现、结构、性质及其应用前景。  相似文献   
6.
以淄博贫煤为原料,用射频等离子体法合成碳纳米管(carbon nanotubes,CNTs)和纳米洋葱状富勒烯(nano—structured onion—like fullerenes,NSOFs),运用场发射扫描电子显微镜(FE—SEM)和高分辨透射电子显微镜(HRTEM)对产物进行了表征和分析.结果表明:以淄博贫煤为原料制备出CNTs和NSOFs,CNTs直径分布均匀,约为10nm左右,准球状的NSOFs直径分布在8nm-30nm之间,石墨化程度较高;并对不同变质程度的煤制备富勒烯的生成机理进行了比较与讨论.  相似文献   
7.
This work studied the effects of adding short basalt fibers (BFs) and multi-walled carbon nanotubes (MWCNTs), both separately and in combination, on the mechanical properties, fracture toughness, and electrical conductivity of an epoxy polymer. The surfaces of the short BFs were either treated using a silane coupling agent or further functionalized by atmospheric plasma to enhance the adhesion between the BFs and the epoxy. The results of a single fiber fragmentation test demonstrated a significantly improved BF/epoxy adhesion upon applying the plasma treatment to the BFs. This resulted in better mechanical properties and fracture toughness of the composites containing the plasma-activated BFs. The improved BF/epoxy adhesion also affected the hybrid toughening performance of the BFs and MWCNTs. In particular, synergistic toughening effects were observed when the plasma-activated BFs/MWCNTs hybrid modifiers were used, while only additive toughening effects occurred for the silane-sized BFs/MWCNTs hybrid modifiers. This work demonstrated a potential to develop strong, tough, and electrically conductive epoxy composites by adding hybrid BF/MWCNT modifiers.  相似文献   
8.
Composite adsorbent films with amine and hydroxyl functionalities were synthesized from chitosan (CS), polyvinyl alcohol (PVA), and amine-modified carbon nanotubes (a-MWCNT) by solvent casting method. Weight proportions of CS to PVA and weight percent of a-MWCNT were optimized to achieve highest chromate removal capacity. Structural characteristics of the composites were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. Accordingly, incorporation of a-MWCNT to CS/PVA structure resulted in the generation of nanochannels, which enhanced adsorption capacity. Moreover, the composite comprising 0.4% wt. a-MWCNT provided over 99% of Cr (VI) removal from 50 mg L−1 Cr (VI) solution within five minutes of contact time. Redlich–Peterson and Radke–Prausnitz isotherm models provided the highest conformity to adsorption data. Maximum chromate sorption capacity of CS/PVA/a-MWCNT composite film was determined as 134.2 mg g−1 being 172% higher than that of CS/PVA. Regeneration was best achieved in 1.0 M NaOH and the composite was shown to retain at least 70% of its original capacity after five consecutive adsorption–desorption cycles.  相似文献   
9.
Up to now, it is a major challenge to protect leading edge of the blades from solid particle erosion. Herein, we propose a structure optimization strategy to fabricate non-woven (NW) enhanced thermoplastic polyurethane nanocomposite films (thermoplastic polyurethane [TPU] - NW@G/Cx) with “sandwich - like” structure by hot pressing technology. TPU NW/graphene nanoplates/carbon nanotube (NW@G/Cx) interlayer film were first fabricated by spraying method. Then the interlayer film was laminated between TPU films to fabricate nanocomposite films. Such prepared TPU - NW@G/Cx film shows excellent solid particle erosion resistance and high-tensile strength. For example, the “steel-and-mortar” structure of NW fabric in TPU film results in high-tensile strength of 45 MPa and storage modulus of 21.2 MPa for TPU - NW@G/C1.0, increasing by 25% and 171% compared with original TPU film (35 MPa, 8 MPa), respectively. In addition, compared with pure TPU film, the “sandwich - like” structure endows TPU - NW@G/C1.2 with excellent solid particle erosion resistance and the thermal conductivity (0.251 W/m·K). These superior properties extends application of the TPU - NW@G/Cx film on wind turbine blades.  相似文献   
10.
Carbon fiber reinforced epoxy (CE) composite is ideal for a cryogenic fuel storage tank in space applications due to its unmatched specific strength and modulus. In this article, inter-laminar shear strength (ILSS) of carbon fiber/epoxy (CE) composite is shown to be considerably improved by engineering the interface with carboxyl functionalized multi-walled carbon nanotube (FCNT) using electrophoretic deposition technique. FCNT deposited fibers from different bath concentrations (0.3, 0.5, and 1.0 g/L) were used to fabricate the laminates, which were then tested at room (30°C) and in-situ liquid nitrogen (LN) (−196°C) temperature as well as conditioning for different time durations (0.25, 0.5, 1, 6, and 12 h) followed by immediate RT testing to study the applicability of these engineered materials at the cryogenic environment. A maximum increment in ILSS was noticed at bath concentration of 0.5 g/L, which was ~21% and ~ 17% higher than neat composite at 30°C and − 196°C, respectively. Short-term LN conditioning was found to be detrimental due to developed cryogenic shock, which was further found to be compensated by cryogenic interfacial clamping upon long-term exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号