首页 | 本学科首页   官方微博 | 高级检索  
     


STREAM RESTORATION AND CRIBWALL PERFORMANCE: A CASE STUDY OF CRIBWALL MONITORING IN SOUTHERN ONTARIO
Authors:V Krymer  A Robert
Affiliation:Department of Geography, York University, , Toronto, Ontario, Canada
Abstract:Stream restoration focusing on adaptable natural and inert material use has been implemented through soil bioengineering designs aimed at the stabilization of urbanized streams. Within each design application materials such as large wood, sediment fill and vegetation must be suited to diverse settings. This paper discusses the application of cribwalls as soil bioengineering designs found in two Southern Ontario watersheds and the criteria that influence their performance. Field measurements of cribwall cuttings, sediment sampling, erosion pin monitoring, and computer‐generated stream power analysis are used to compare design performance at several sites. It is determined that the technical specifications of the design and site characteristics such as stream power distribution, sediment, and channel planform are equally involved in long‐term streambank stability. The results indicate that cribwalls with dense cutting growth perform well on streambanks that offer a greater amount of soil cohesion, nutrients, and infiltration in the mid and upper sections of the bank. In streams with moderate channel slopes and stream power distribution that is above the watershed mean, streams with well‐developed floodplains, sinuous channel planforms, and low bank height ratios perform better than those that are confined, straightened, and have greater bank height ratios. Throughout the comparison of several cribwall sites, the implication of this work is to demonstrate how to assess the fitness of similar soil bioengineering designs for application to diverse stream settings and to further validate their significance in stream restoration as designs that are multifunctional. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:cribwall  soil bioengineering  live cuttings  stream restoration  DEM  stream power  erosion monitoring  design performance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号