首页 | 本学科首页   官方微博 | 高级检索  
     


High Hole Mobility of GaSb Relaxed Epilayer Grown on GaAs Substrate by MOCVD through Interfacial Misfit Dislocations Array
Authors:Wei Zhou  Xiang Li  Sujing Xia  Jie Yang  Wu Tang  and KMLau  State
Affiliation:Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China 2) Department of Electronic and Computer Engineering,Hong Kong University of Science & Technology,Hong Kong,China
Abstract:The structural property of GaSb epilayers grown on semi-insulator GaAs (001) substrate by metalorganic chemical vapor deposition (MOCVD) using Triethylgallium (TEGa) and trimethylantimony (TMSb),was investigated by variation of the Sb:Ga (V/III) ratio.An optimum V/III ratio of 1.4 was determined in our growth conditions.Using transmission electron microscopy (TEM),we found that there was an interfacial misfit dislocations (IMF) growth mode in our experiment,in which the large misfit strain between epilayer and substrate is relaxed by periodic 90 deg.IMF array at the hetero-epitaxial interface.The rms roughness of a 300 nm-thick GaSb layer is only 2.7 nm in a 10 μm×10 μm scan from atomic force microscopy (AFM) result.The best hole density and mobility of 300 nm GaSb epilayer are 5.27×10 6 cm 3 (1.20×10 6) and 553 cm 2 ·V 1 ·s 1 (2340) at RT (77 K) from Hall measurement,respectively.These results indicate that the IMF growth mode can be used in MOCVD epitaxial technology similar to molecular beam epitaxy (MBE) technology to produce the thinner GaSb layer with low density of dislocations and other defects on GaAs substrate for the application of devices.
Keywords:Interfacial misfit dislocations  Metalorganic chemical vapour deposition  Misfit dislocation  Hole mobility
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号