共查询到20条相似文献,搜索用时 0 毫秒
1.
Bini Chhetri Soren Jagadish Babu Dasari Alessio Ottaviani Beatrice Messina Giada Andreotti Alice Romeo Federico Iacovelli Mattia Falconi Alessandro Desideri Paola Fiorani 《International journal of molecular sciences》2021,22(14)
Human DNA topoisomerase IB controls the topological state of supercoiled DNA through a complex catalytic cycle that consists of cleavage and religation reactions, allowing the progression of fundamental DNA metabolism. The catalytic steps of human DNA topoisomerase IB were analyzed in the presence of a drug, obtained by the open-access drug bank Medicines for Malaria Venture. The experiments indicate that the compound strongly and irreversibly inhibits the cleavage step of the enzyme reaction and reduces the cell viability of three different cancer cell lines. Molecular docking and molecular dynamics simulations suggest that the drug binds to the human DNA topoisomerase IB-DNA complex sitting inside the catalytic site of the enzyme, providing a molecular explanation for the cleavage-inhibition effect. For all these reasons, the aforementioned drug could be a possible lead compound for the development of an efficient anti-tumor molecule targeting human DNA topoisomerase IB. 相似文献
2.
Discovery of Mono‐ and Disubstituted 1H‐Pyrazolo[3,4]pyrimidines and 9H‐Purines as Catalytic Inhibitors of Human DNA Topoisomerase IIα
下载免费PDF全文

Barbara Pogorelčnik Dr. Matjaž Brvar Prof. Bojana Žegura Prof. Metka Filipič Prof. Tom Solmajer Prof. Andrej Perdih 《ChemMedChem》2015,10(2):345-359
Human DNA topoisomerase IIα (htIIα) is a validated target for the development of anticancer agents. Based on structural data regarding the binding mode of AMP‐PNP (5′‐adenylyl‐β,γ‐imidodiphosphate) to htIIα, we designed a two‐stage virtual screening campaign that combines structure‐based pharmacophores and molecular docking. In the first stage, we identified several monosubstituted 9H‐purine compounds and a novel class of 1H‐pyrazolo[3,4]pyrimidines as inhibitors of htIIα. In the second stage, disubstituted analogues with improved cellular activities were discovered. Compounds from both classes were shown to inhibit htIIα‐mediated DNA decatenation, and surface plasmon resonance (SPR) experiments confirmed binding of these two compounds on the htIIα ATPase domain. Proposed complexes and interaction patterns between both compounds and htIIα were further analyzed in molecular dynamics simulations. Two compounds identified in the second stage showed promising anticancer activities in hepatocellular carcinoma (HepG2) and breast cancer (MCF‐7) cell lines. The discovered compounds are suitable starting points for further hit‐to‐lead development in anticancer drug discovery. 相似文献
3.
4.
A huge effort has been devoted to developing drugs targeting integrins over 30 years, because of the primary roles of integrins in the cell-matrix milieu. Five αv-containing integrins, in the 24 family members, have been a central target of fibrosis. Currently, a small molecule against αvβ1 is undergoing a clinical trial for NASH-associated fibrosis as a rare agent aiming at fibrogenesis. Latent TGFβ activation, a distinct talent of αv-integrins, has been intriguing as a therapeutic target. None of the αv-integrin inhibitors, however, has been in the clinical market. αv-integrins commonly recognize an Arg-Gly-Asp (RGD) sequence, and thus the pharmacophore of inhibitors for the 5-integrins is based on the same RGD structure. The RGD preference of the integrins, at the same time, dilutes ligand specificity, as the 5-integrins share ligands containing RGD sequence such as fibronectin. With the inherent little specificity in both drugs and targets, “disease specificity” has become less important for the inhibitors than blocking as many αv-integrins. In fact, an almighty inhibitor for αv-integrins, pan-αv, was in a clinical trial. On the contrary, approved integrin inhibitors are all specific to target integrins, which are expressed in a cell-type specific manner: αIIbβ3 on platelets, α4β1, α4β7 and αLβ2 on leukocytes. Herein, “disease specific” integrins would serve as attractive targets. α8β1 and α11β1 are selectively expressed in hepatic stellate cells (HSCs) and distinctively induced upon culture activation. The exceptional specificity to activated HSCs reflects a rather “pathology specific” nature of these new integrins. The monoclonal antibodies against α8β1 and α11β1 in preclinical examinations may illuminate the road to the first medical agents. 相似文献
5.
6.
7.
Shu-Shun Hsueh S.-S. Wang Shu-Han Chen Chia-Lin Wang W. Wu Ta-Hsien Lin 《International journal of molecular sciences》2022,23(3)
Human γD-crystallin (HGDC) is an abundant lens protein residing in the nucleus of the human lens. Aggregation of this and other structural proteins within the lens leads to the development of cataract. Much has been explored on the stability and aggregation of HGDC and where detailed investigation at the atomic resolution was needed, the X-ray structure was used as an initial starting conformer for molecular modeling. In this study, we implemented NMR-solution HGDC structures as starting conformers for molecular dynamics simulations to provide the missing pieces of the puzzle on the very early stages of HGDC unfolding leading up to the domain swap theories proposed by past studies. The high-resolution details of the conformational dynamics also revealed additional insights to possible early intervention for cataractogenesis. 相似文献
8.
Catarina Caseiro Joana Nunes Ribeiro Dias Carlos Mendes Godinho de Andrade Fontes Pedro Bule 《International journal of molecular sciences》2022,23(6)
β-glucans are a diverse group of polysaccharides composed of β-1,3 or β-(1,3-1,4) linked glucose monomers. They are mainly synthesized by fungi, plants, seaweed and bacteria, where they carry out structural, protective and energy storage roles. Because of their unique physicochemical properties, they have important applications in several industrial, biomedical and biotechnological processes. β-glucans are also major bioactive molecules with marked immunomodulatory and metabolic properties. As such, they have been the focus of many studies attesting to their ability to, among other roles, fight cancer, reduce the risk of cardiovascular diseases and control diabetes. The physicochemical and functional profiles of β-glucans are deeply influenced by their molecular structure. This structure governs β-glucan interaction with multiple β-glucan binding proteins, triggering myriad biological responses. It is then imperative to understand the structural properties of β-glucans to fully reveal their biological roles and potential applications. The deconstruction of β-glucans is a result of β-glucanase activity. In addition to being invaluable tools for the study of β-glucans, these enzymes have applications in numerous biotechnological and industrial processes, both alone and in conjunction with their natural substrates. Here, we review potential applications for β-glucans and β-glucanases, and explore how their functionalities are dictated by their structure. 相似文献
9.
Jin-Hee Kwon Na-Gyeong Lee A-Ram Kang Jie-Young Song Sang-Gu Hwang Hong-Duck Um Joon Kim Jong Kuk Park 《International journal of molecular sciences》2021,22(24)
β-apopicropodophyllin (APP), a derivative of podophyllotoxin (PPT), has been identified as a potential anti-cancer drug. This study tested whether APP acts as an anti-cancer drug and can sensitize colorectal cancer (CRC) cells to radiation treatment. APP exerted an anti-cancer effect against the CRC cell lines HCT116, DLD-1, SW480, and COLO320DM, with IC50 values of 7.88 nM, 8.22 nM, 9.84 nM, and 7.757 nM, respectively, for the induction of DNA damage. Clonogenic and cell counting assays indicated that the combined treatment of APP and γ-ionizing radiation (IR) showed greater retardation of cell growth than either treatment alone, suggesting that APP sensitized CRC cells to IR. Annexin V–propidium iodide (PI) assays and immunoblot analysis showed that the combined treatment of APP and IR increased apoptosis in CRC cells compared with either APP or IR alone. Results obtained from the xenograft experiments also indicated that the combination of APP and IR enhanced apoptosis in the in vivo animal model. Apoptosis induction by the combined treatment of APP and IR resulted from reactive oxygen species (ROS). Inhibition of ROS by N-acetylcysteine (NAC) restored cell viability and decreased the induction of apoptosis by APP and IR in CRC cells. Taken together, these results indicate that a combined treatment of APP and IR might promote apoptosis by inducing ROS in CRC cells. 相似文献
10.
Thuzar Hla Shwe Peraphan Pothacharoen Thanyaluck Phitak Benjawan Wudtiwai Prachya Kongtawelert 《International journal of molecular sciences》2021,22(16)
Liver cancer is the sixth most common cancer worldwide with high morbidity and mortality. Programmed death ligand 1 (PD-L1) is a major ligand of programmed death 1 receptor (PD1), and PD1/PD-L1 checkpoint acts as a negative regulator of the immune system. Cancers evade the host’s immune defense via PD-L1 expression. This study aimed to investigate the effects of tumor-related cytokines, interferon gamma (IFNγ), and tumor necrosis factor alpha (TNFα) on PD-L1 expression in human hepatocellular carcinoma cells, HepG2. Furthermore, as atorvastatin, a cholesterol-lowering agent, is documented for its immunomodulatory properties, its effect on PD-L1 expression was investigated. In this study, through real-time RT-PCR, Western blot, and immunocytochemistry methods, PD-L1 expression in both mRNA and protein levels was found to be synergistically upregulated in HepG2 by a combination of IFNγ and TNFα, and STAT1 activation was mainly responsible for that synergistic effect. Next, atorvastatin can inhibit the induction of PD-L1 by either IFNγ alone or IFNγ/TNFα combination treatment in HepG2 cells. In conclusion, in HepG2 cells, expression of PD-L1 was augmented by cytokines in the tumor microenvironment, and the effect of atorvastatin on tumor immune response through inhibition of PD-L1 induction should be taken into consideration in cancer patients who have been prescribed atorvastatin. 相似文献
11.
Dan-in Jang A-Hyeon Lee Hye-Yoon Shin Hyo-Ryeong Song Jong-Hwi Park Tae-Bong Kang Sang-Ryong Lee Seung-Hoon Yang 《International journal of molecular sciences》2021,22(5)
Tumor necrosis factor alpha (TNF-α) was initially recognized as a factor that causes the necrosis of tumors, but it has been recently identified to have additional important functions as a pathological component of autoimmune diseases. TNF-α binds to two different receptors, which initiate signal transduction pathways. These pathways lead to various cellular responses, including cell survival, differentiation, and proliferation. However, the inappropriate or excessive activation of TNF-α signaling is associated with chronic inflammation and can eventually lead to the development of pathological complications such as autoimmune diseases. Understanding of the TNF-α signaling mechanism has been expanded and applied for the treatment of immune diseases, which has resulted in the development of effective therapeutic tools, including TNF-α inhibitors. Currently, clinically approved TNF-α inhibitors have shown noticeable potency in a variety of autoimmune diseases, and novel TNF-α signaling inhibitors are being clinically evaluated. In this review, we briefly introduce the impact of TNF-α signaling on autoimmune diseases and its inhibitors, which are used as therapeutic agents against autoimmune diseases. 相似文献
12.
Adela Markota agalj Branka Marinovi Zrinka Bukvi Mokos 《International journal of molecular sciences》2022,23(7)
Hidradenitis suppurativa (HS) is a chronic, recurrent, inflammatory skin disease deriving from the hair follicles. The formation of inflammatory nodules, abscesses, fistulas, and sinus tracts is characterized by a large inflow of key pro-inflammatory mediators, such as IFN-γ, TNF-α, IL-1, IL-17, and IL-12/23. Adalimumab is currently the only Food and Drug Administration (FDA)- and European Medicines Agency (EMA)-approved biologic therapy for moderate to severe HS in adults and adolescents. However, the long-term effectiveness of this TNF-α inhibitor in HS patients has shown to be highly variable. This review aims to review the evidence for emerging therapies that target the main pro-inflammatory cytokines in HS pathogenesis. A review of the literature was conducted, using the PubMed and Google Scholar repositories, as well as Clinicaltrials.gov. Presently, the most promising biologics in phase III trials are anti-IL-17 antibodies, secukinumab, and bimekizumab. Furthermore, an anti-IL-1 biologic, bermekimab, is currently in phase II trials, and shows encouraging results. Overall, the clinical efficacies of all new targeted therapies published up to this point are limited. More studies need to be performed to clarify the precise molecular pathology, and assess the efficacy of biological therapies for HS. 相似文献
13.
Clare Murray Eva Galvan Carlos Ontiveros Yilun Deng Haiyan Bai Alvaro Souto Padron Kathryn Hinchee-Rodriguez Myrna G. Garcia Anand Kornepati Jose Conejo-Garcia Tyler J. Curiel 《International journal of molecular sciences》2022,23(9)
The interaction between tumor surface-expressed PDL1 and immune cell PD1 for the evasion of antitumor immunity is well established and is targeted by FDA-approved anti-PDL1 and anti-PD1 antibodies. Nonetheless, recent studies highlight the immunopathogenicity of tumor-intrinsic PDL1 signals that can contribute to the resistance to targeted small molecules, cytotoxic chemotherapy, and αPD1 immunotherapy. As genetic PDL1 depletion is not currently clinically tractable, we screened FDA-approved drugs to identify those that significantly deplete tumor PDL1. Among the candidates, we identified the β-lactam cephalosporin antibiotic cefepime as a tumor PDL1-depleting drug (PDD) that increases tumor DNA damage and sensitivity to DNA-damaging agents in vitro in distinct aggressive mouse and human cancer lines, including glioblastoma multiforme, ovarian cancer, bladder cancer, and melanoma. Cefepime reduced tumor PDL1 post-translationally through ubiquitination, improved DNA-damaging-agent treatment efficacy in vivo in immune-deficient and -proficient mice, activated immunogenic tumor STING signals, and phenocopied specific genetic PDL1 depletion effects. The β-lactam ring and its antibiotic properties did not appear contributory to PDL1 depletion or to these treatment effects, and the related cephalosporin ceftazidime produced similar effects. Our findings highlight the rapidly translated potential for PDDs to inhibit tumor-intrinsic PDL1 signals and improve DNA-damaging agents and immunotherapy efficacy. 相似文献
14.
Jerzy Wiater Marcin Samiec Kamil Wartalski Zdzisaw Smorg Jacek Jura Ryszard Somski Maria Skrzyszowska Marek Romek 《International journal of molecular sciences》2021,22(18)
Pig-to-human xenotransplantation seems to be the response to the contemporary shortage of tissue/organ donors. Unfortunately, the phylogenetic distance between pig and human implies hyperacute xenograft rejection. In this study, we tested the hypothesis that combining expression of human α1,2-fucosyltransferase (hFUT2) and α-galactosidase A (hGLA) genes would allow for removal of this obstacle in porcine transgenic epidermal keratinocytes (PEKs). We sought to determine not only the expression profiles of recombinant human α1,2-fucosyltransferase (rhα1,2-FT) and α-galactosidase A (rhα-Gal A) proteins, but also the relative abundance (RA) of Galα1→3Gal epitopes in the PEKs stemming from not only hFUT2 or hGLA single-transgenic and hFUT2×hGLA double-transgenic pigs. Our confocal microscopy and Western blotting analyses revealed that both rhα1,2-FT and rhα-Gal A enzymes were overabundantly expressed in respective transgenic PEK lines. Moreover, the semiquantitative levels of Galα1→3Gal epitope that were assessed by lectin fluorescence and lectin blotting were found to be significantly diminished in each variant of genetically modified PEK line as compared to those observed in the control nontransgenic PEKs. Notably, the bi-transgenic PEKs were characterized by significantly lessened (but still detectable) RAs of Galα1→3Gal epitopes as compared to those identified for both types of mono-transgenic PEK lines. Additionally, our current investigation showed that the coexpression of two protective transgenes gave rise to enhanced abrogation of Galα→3Gal epitopes in hFUT2×hGLA double-transgenic PEKs. To summarize, detailed estimation of semiquantitative profiles for human α-1,2-FT and α-Gal A proteins followed by identification of the extent of abrogating the abundance of Galα1→3Gal epitopes in the ex vivo expanded PEKs stemming from mono- and bi-transgenic pigs were found to be a sine qua non condition for efficiently ex situ protecting stable lines of skin-derived somatic cells inevitable in further studies. The latter is due to be focused on determining epigenomic reprogrammability of single- or double-transgenic cell nuclei inherited from adult cutaneous keratinocytes in porcine nuclear-transferred oocytes and corresponding cloned embryos. To our knowledge, this concept was shown to represent a completely new approach designed to generate and multiply genetically transformed pigs by somatic cell cloning for the needs of reconstructive medicine and dermoplasty-mediated tissue engineering of human integumentary system. 相似文献
15.
Giovanni Bolcato Eleonora Cescon Matteo Pavan Maicol Bissaro Davide Bassani Stephanie Federico Giampiero Spalluto Mattia Sturlese Stefano Moro 《International journal of molecular sciences》2021,22(18)
Fragment-Based Drug Discovery (FBDD) has become, in recent years, a consolidated approach in the drug discovery process, leading to several drug candidates under investigation in clinical trials and some approved drugs. Among these successful applications of the FBDD approach, kinases represent a class of targets where this strategy has demonstrated its real potential with the approved kinase inhibitor Vemurafenib. In the Kinase family, protein kinase CK1 isoform δ (CK1δ) has become a promising target in the treatment of different neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In the present work, we set up and applied a computational workflow for the identification of putative fragment binders in large virtual databases. To validate the method, the selected compounds were tested in vitro to assess the CK1δ inhibition. 相似文献
16.
Zhipei Gao Yongli Du Xiehuang Sheng Jingkang Shen 《International journal of molecular sciences》2021,22(7)
Estrogen-related receptor α (ERRα), which is overexpressed in a variety of cancers has been considered as an effective target for anticancer therapy. ERRα inverse agonists have been proven to effectively inhibit the migration and invasion of cancer cells. As few crystalline complexes have been reported, molecular dynamics (MD) simulations were carried out in this study to deepen the understanding of the interaction mechanism between inverse agonists and ERRα. The binding free energy was analyzed by the MM-GBSA method. The results show that the total binding free energy was positively correlated with the biological activity of an inverse agonist. The interaction of the inverse agonist with the hydrophobic interlayer composed of Phe328 and Phe495 had an important impact on the biological activity of inverse agonists, which was confirmed by the decomposition of energy on residues. As Glu331 flipped and formed a hydrogen bond with Arg372 in the MD simulation process, the formation of hydrogen bond interaction with Glu331 was not a necessary condition for the compound to act as an inverse agonist. These rules provide guidance for the design of new inverse agonists. 相似文献
17.
Gabriela Barszczewska-Pietraszek Magorzata Drzewiecka Piotr Czarny Tomasz Skorski Tomasz
liwiski 《International journal of molecular sciences》2023,24(1)
DNA polymerase theta (Polθ)-mediated end joining (TMEJ) is, along with homologous recombination (HR) and non-homologous end-joining (NHEJ), one of the most important mechanisms repairing potentially lethal DNA double-strand breaks (DSBs). Polθ is becoming a new target in cancer research because it demonstrates numerous synthetically lethal interactions with other DNA repair mechanisms, e.g., those involving PARP1, BRCA1/2, DNA-PK, ATR. Inhibition of Polθ could be achieved with different methods, such as RNA interference (RNAi), CRISPR/Cas9 technology, or using small molecule inhibitors. In the context of this topic, RNAi and CRISPR/Cas9 are still more often applied in the research itself rather than clinical usage, different than small molecule inhibitors. Several Polθ inhibitors have been already generated, and two of them, novobiocin (NVB) and ART812 derivative, are being tested in clinical trials against HR-deficient tumors. In this review, we describe the significance of Polθ and the Polθ-mediated TMEJ pathway. In addition, we summarize the current state of knowledge about Polθ inhibitors and emphasize the promising role of Polθ as a therapeutic target. 相似文献
18.
Roberto Pestana-Nobles Yani Aranguren-Díaz Elwi Machado-Sierra Juvenal Yosa Nataly J. Galan-Freyle Laura X. Sepulveda-Montao Daniel G. Kuroda Leonardo C. Pacheco-Londoo 《International journal of molecular sciences》2022,23(3)
Bacterial resistance is responsible for a wide variety of health problems, both in children and adults. The persistence of symptoms and infections are mainly treated with β-lactam antibiotics. The increasing resistance to those antibiotics by bacterial pathogens generated the emergence of extended-spectrum β-lactamases (ESBLs), an actual public health problem. This is due to rapid mutations of bacteria when exposed to antibiotics. In this case, β-lactamases are enzymes used by bacteria to hydrolyze the beta-lactam rings present in the antibiotics. Therefore, it was necessary to explore novel molecules as potential β-lactamases inhibitors to find antibacterial compounds against infection caused by ESBLs. A computational methodology based on molecular docking and molecular dynamic simulations was used to find new microalgae metabolites inhibitors of β-lactamase. Six 3D β-lactamase proteins were selected, and the molecular docking revealed that the metabolites belonging to the same structural families, such as phenylacridine (4-Ph), quercetin (Qn), and cryptophycin (Cryp), exhibit a better binding score and binding energy than commercial clinical medicine β-lactamase inhibitors, such as clavulanic acid, sulbactam, and tazobactam. These results indicate that 4-Ph, Qn, and Cryp molecules, homologous from microalgae metabolites, could be used, likely as novel β-lactamase inhibitors or as structural templates for new in-silico pharmaceutical designs, with the possibility of combatting β-lactam resistance 相似文献
19.
Katarzyna Nowiska Karolina Jaboska Urszula Ciesielska Aleksandra Piotrowska Katarzyna Haczkiewicz-Leniak Konrad Paweczyk Marzenna Podhorska-Okow Piotr Dzigiel 《International journal of molecular sciences》2022,23(22)
The rapid growth and division of cancer cells are associated with mitochondrial biogenesis or switching to glycolysis. ERRα, PGC-1α and irisin/FNDC5 are some of the proteins that can influence these processes. The aim of this study was to determine the correlation of these proteins in non-small cell lung cancer (NSCLC) and to investigate their association with clinicopathological parameters. Immunohistochemistry reactions were performed on tissue microarrays (860 NSCLC, 140 non-malignant lung tissue). The normal fibroblast cell line (IMR-90) and lung cancer cell lines (NCI-H1703 and NCI-H522) were used as co-cultures. The mRNA levels of FNDC5 and ESRRA (encoding ERRα) were assessed in IMR-90 cells after co-culture with lung cancer cells. We observed a decreased level of ERRα with an increase in tumor size (T), stages of the disease, and lymph node metastases (N). In the adenocarcinoma (AC) subtype, patients with a higher ERRα expression had significantly longer overall survival. A moderate positive correlation was observed between FNDC5 mRNA and ESRRA mRNA in NSCLCs. The expression of FNDC5 mRNA in IMR-90 cells increased after 24 h, and ESRRA gene expression increased after 48 h of co-culture. The ERRα receptor with PGC-1α participates in the control of FNDC5/irisin expression. Normal fibroblasts revealed an upregulation of the FNDC5 and ESRRA genes under the influence of lung cancer cells. 相似文献
20.
Pavlína Janovsk Emmanuel Normant Hari Miskin Vítzslav Bryja 《International journal of molecular sciences》2020,21(23)
The casein kinase 1 enzymes (CK1) form a family of serine/threonine kinases with seven CK1 isoforms identified in humans. The most important substrates of CK1 kinases are proteins that act in the regulatory nodes essential for tumorigenesis of hematological malignancies. Among those, the most important are the functions of CK1s in the regulation of Wnt pathways, cell proliferation, apoptosis and autophagy. In this review we summarize the recent developments in the understanding of biology and therapeutic potential of the inhibition of CK1 isoforms in the pathogenesis of chronic lymphocytic leukemia (CLL), other non-Hodgkin lymphomas (NHL), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and multiple myeloma (MM). CK1δ/ε inhibitors block CLL development in preclinical models via inhibition of WNT-5A/ROR1-driven non-canonical Wnt pathway. While no selective CK1 inhibitors have reached clinical stage to date, one dual PI3Kδ and CK1ε inhibitor, umbralisib, is currently in clinical trials for CLL and NHL patients. In MDS, AML and MM, inhibition of CK1α, acting via activation of p53 pathway, showed promising preclinical activities and the first CK1α inhibitor has now entered the clinical trials. 相似文献