共查询到19条相似文献,搜索用时 62 毫秒
1.
针对无线传感器网络节点定位问题,在传统粒子群算法定位技术研究的基础上,提出了一种自适应罚函数优化粒子群的节点定位算法。在定位过程中,运用极大似然估计法进行粗略定位,对测距误差进行加权处理,限制搜索区域,根据群体中可行解比例的大小,自适应调节罚因子的大小进行迭代寻优,最终得到节点坐标。仿真结果表明:该算法较好地克服了传统粒子群算法收敛速度慢,易陷入局部极小点等问题,对比同类算法,算法具有更高的定位精度和较快的收敛速,且稳定性更高。 相似文献
2.
标准粒子滤波算法用于无线传感器网络运动目标跟踪时,非高斯噪声环境会降低其跟踪精度和计算效率。针对该问题,结合多传感器测量模型和Kullback-Leibler距离(KLD)采样方法,提出一种自适应粒子滤波算法。在满足预设阈值条件时,引入补偿函数对重要性概率密度函数(IPDF)进行迭代更新,同时利用具有自适应退火参数的模拟退火算法使粒子快速接近高似然区域。在此基础上,结合KLD采样动态调整粒子规模,在保证跟踪精度的同时减少运算量。仿真结果表明,与KLD-PF算法相比,该算法的IPDF分布接近真实后验概率密度分布,跟踪精度较高,能够在不同参数的非高斯噪声下进行有效跟踪。 相似文献
3.
提出一种新的基于状态相关因子的抗差自适应滤波算法。采用状态相关因子将非线性系统转换为状态相关系统,建立抗差自适应滤波模型,利用等价权矩阵和自适应因子进行信息分配,从而控制动力学模型异常和观测异常对导航解的影响。特定条件下的仿真计算表明,提出的基于状态相关因子的抗差自适应滤波算法,不仅能够抑制动力学模型噪声和观测噪声干扰,而且滤波计算简单,导航精度相对优于扩展卡尔曼滤波和粒子滤波算法。 相似文献
4.
为了解决粒子滤波(PF)的无线传感器目标跟踪中样本贫化导致的精度较低的问题,提出了自适应蝙蝠粒子滤波的WSN目标跟踪方法。通过自适应的蝙蝠算法的滤波算法优化粒子重采样过程,结合最新的观测值定义粒子的适应度函数,引导粒子整体上向较高的随机区域移动。同时利用动态自适应惯性权重探索新的粒子位置更新为设计机制,引入动态适应惯性权重值, 有效调整全局探索和局部探索适应能力、改善粒子贫化和局部极值问题,增加粒子群多样化从而提高跟踪性能。实验结果表明,自适应蝙蝠粒子滤波算法重采样方法可以防止粒子的退化,增加粒子的多样性,减少跟踪误差,可以减少算法的运行时间,实时追踪性能大幅提高。与BA-PF算法和PF算法相比较,IBAPF 算法的计算时间是最短的,IBA-PF算法的位置和速度的平均平方根误差最小(位置0.0311、0.0202、速度0.0262、0.0101),PF算法的跟踪精度是最低的,而IBA-PF跟踪精度较高,IBA-PF算法被证明具有良好的跟踪性能。 相似文献
5.
为了提高无线传感器网络( WSNs)使用寿命,对WSNs的目标跟踪方式进行研究,提出基于无迹Kalman滤波( UKF)的WSNs Sink节点动态跟踪算法,以实现高效节能的资源管理和利用方式。首先利用UKF算法对目标节点的下一位置进行预测,然后通过四圆区域定位交叉定位算法对Sink节点的位置区域进行局部准确定位。实验结果表明:这种动态的Sink节点预测定位算法能够有效缩短数据发射传感器和Sink点之间的距离,减少跳数,从而实现负载均衡降低能耗的效果。 相似文献
6.
为了提高无线传感器网络目标跟踪的实时性,减少通信量,提出了一种二进制无线传感器网络的分布式自适应粒子滤波算法,该算法在簇头更换时,簇头之间只需要传送滤波值和误差方差,而无需传递大量粒子,同时该算法根据滤波方差在线调整粒子数,从而降低了算法的计算量。从算法耗时、均方根误差(跟踪精度)以及通信量等方面进行了仿真研究。仿真结果表明,分布式自适应粒子滤波算法的耗时、通信量要明显少于集中式粒子滤波和分布式粒子滤波;同时其均方根误差的变化幅度受粒子数的影响非常小,具有更好的跟踪性能。 相似文献
7.
分析了新息序列是有色噪声时白适应卡尔曼滤波算法(Adaptive Kalman Filter,AKF)的滤波效果,在范数意义下,证明了k时刻AKF算法中估计误差协方差矩阵和k时刻最优KF算法中估计误差协方差矩阵间距离与新息序 列相关性成正比.利用上述结论,证明了所有AKF算法中估计误差协方差矩阵必逐渐远离1时刻最优KF算法中估计误差协方差矩阵.总结上述结论,发现AKF算法收敛条件可描述成以下几个等价命题:1)AKF算法中估计误差协方差矩阵与1时刻最优KF算法中估计误差协方差矩阵差有极限;2)k时刻AKF算法中估计误差协方差矩阵和k时刻最优KF算法中估计误差方差矩阵间距离极限是0;3)AKF算法渐进收敛于k时刻最优KF算法;4)AKF算法中新息序列渐进收敛于白噪声序列;5)k时刻AKF算法中滤波增益矩阵与k时刻最优KF算法中滤波增益矩阵间距离极限是0.上述理论为最终解决复杂环境下无线传感器网络节点定位问题奠定了基础. 相似文献
8.
基于均值漂移和联合粒子滤波的移动节点定位算法 总被引:1,自引:1,他引:1
针对无线传感器网络移动节点定位面临的高精度和实时性要求,把均值漂移算法引入联合粒子滤波(Joint ParticleFilter)框架.提出了基于均值漂移和联合粒子滤波的移动节点定位算法.它使用均值漂移算法构建粒子滤波的建议分布,通过有效利用最新观测信息,提高粒子状态估计的准确性,使得采样粒子的状态分布与后验概率分布更接近,减少了状态估计必需的粒子数目.该算法还提出了基于虚拟海明距离和交互势的权重计算方式,减少相邻移动节点间的干扰.仿真实验结果表明,基于均值漂移算法和联合粒子滤波的移动节点定位,可获得比基本粒子滤波更高的定位精度,其定位精度与无味粒子滤波(Uscented Particle Filter)相当,而计算开销比无味粒子滤波减小至少50%. 相似文献
9.
基于抗差估计方法的WSN节点定位算法研究 总被引:1,自引:0,他引:1
针对无线传感器网络在实际应用中,节点间测距结果往往含有粗差,并会严重影响未知节点坐标估计值的准确性和可靠性这一问题,引入抗差估计理论,采用IGGⅢ权因子函数,设计了一种基于抗差估计的节点定位算法。该算法能对含有不同幅度的测量误差分别采取保权、降权和淘汰等相应处理,明显提高定位精度。仿真实验表明:在无粗差的情况下,本文算法与经典最小二乘定位算法的定位效果保持了良好的等效性;在含有粗差的情况下,本文算法借助于选择的阈值,对不同的粗差采取剔除以及降权等适当处理,比经典最小二乘定位取得了更高的定位精度,保证了估计结果的无偏性,体现出良好的抗差性能。 相似文献
10.
节点定位是无线传感器网络(WSNs)的关键技术之一.接收信号强度指示(RSSI)测距技术以其不需增加任何额外的硬件设备的特点在节点定位中得到广泛应用.为了提高定位精度,在RSSI测距的基础上,提出将粒子群优化算法( PSO)引入节点定位中.首先由RSSI测得未知节点与锚节点的距离,然后应用PSO算法计算出未知节点的估计... 相似文献
11.
针对卡尔曼滤波需要精确已知状态数学模型及其统计特性的问题,提出一种抗差自适应Sage滤波算法.该方法以Sage滤波为基本框架,吸收了抗差估计和自适应滤波的优点,利用Sage滤波开窗法求得观测残差向量和新息(预测残差)向量的协方差阵,由抗差估计方法确定观测噪声协方差矩阵,利用自适应因子调整动力学模型噪声协方差矩阵,以控制观测异常和动力学模型噪声对导航精度的影响.将提出的算法应用到捷联惯性导航(SINS)/合成孔径雷达(SAR)组合导航系统中,并与Kalman滤波和Sage滤波进行比较分析,仿真结果表明,提出的新算法不但能有效地控制观测异常和动态模型异常对状态参数估值的影响,而且能够抵制状态扰动,提高组合导航系统的滤波精度. 相似文献
12.
13.
14.
用偏差分离估计的鲁棒Kalman滤波算法 总被引:1,自引:0,他引:1
本文针对带模型误差系统,利用偏差分离估计提出了一种鲁棒Kalman滤波算法,并给出了该算法的渐近稳定条件。仿真结果表明本文算法是有效的。 相似文献
15.
基于自适应粒子滤波的跳水运动视频跟踪算法 总被引:1,自引:0,他引:1
用传统粒子滤波算法对跳水运动视频跟踪存在两个突出问题:观测模型不能适应运动员身体的表观变化;运动模型不能准确预测运动员位置的快速改变。针对这两个问题,本文提出一种自适应粒子滤波算法。该算法在粒子滤波框架下引入一种自适应观测模型,并且根据跟踪误差与运动员动作改变幅度的大小,自适应选择噪声方差和粒子数量。实验结果表明,本文算法比传统粒子滤波算法具有更低的跟踪误差率,而且在运动员动作改变幅度变大时有更好的鲁棒性。 相似文献
16.
将SAD匹配算法和IMM Kalman滤波算法相结合,构建了一个实时追踪监控系统的雏形.该系统通过SAD匹配算法对目标进行检测,结合IMM Kalman滤波算法使追踪更加精确,从而优化现有的监控系统.选用MATLAB对SAD匹配算法和IMM Kalman滤波算法分别进行仿真,仿真结果表明SAD匹配算法与IMM Kalm... 相似文献
17.
18.