首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Particle size distribution as a useful tool for microbial detection.   总被引:1,自引:0,他引:1  
Worldwide, raw or treated wastewater is used for irrigation. However, this practice implies that the microbial content must be controlled. Unfortunately, detection techniques for microorganisms are costly, time consuming, and require highly trained personnel. For these reasons, this study used particle size distribution to measure the microbial quality of wastewater through correlations between the number or volume of particles and the concentration of fecal coliforms, Salmonella spp. and helminth ova. Such correlations were obtained for both raw and chemically treated wastewater. The best fit was the one for helminth ova, which applies for both the influent and effluent and also for all the coagulants involved. This technique allows the on-line quantification of helminth ova at a cost of US$3 and it takes only 5 minutes, instead of the US$70 and 5 days for the standard technique. With respect to the coagulants applied, their behavior is different only for particles smaller than 8 microm, and thus this value is considered as the critical size for this particular treatment. The best coagulant was the aluminium polychloride. In addition, this work establishes the distribution of COD, TSS, nitrogen, and phosphorous for particles smaller and larger than 20 microm.  相似文献   

2.
Wastewater treatment plant operators encounter complex operational problems related to the activated sludge process and usually respond to these by applying their own intuition and by taking advantage of what they have learnt from past experiences of similar problems. However, previous process experiences are not easy to integrate in numerical control, and new tools must be developed to enable re-use of plant operating experience. The aim of this paper is to investigate the usefulness of a case-based reasoning (CBR) approach to apply learning and re-use of knowledge gained during past incidents to confront actual complex problems through the IWA/COST Benchmark protocol. A case study shows that the proposed CBR system achieves a significant improvement of the benchmark plant performance when facing a high-flow event disturbance.  相似文献   

3.
A full-scale study investigated the influence of diurnal flow equalisation and prefermentation on the characteristics of sludge. The diurnal variations in the sludge concentration and the level of sludge blanket in the secondary clarifiers were evened out significantly with the use of an equalization basin. Stable conditions in the aeration basin and in the secondary clarifiers contributed to the improvements in the performance of the BNR plant. A decrease in the waste activated sludge production and an improvement in the settleability were also observed. The low WAS yield was attributed to the low yield COD compounds produced by the prefermentation, longer sludge age and constant conditions obtained by the flow equalisation. Some evidence was found that good settling properties would be related to the amount of suspended solids fed to the biological process as well as to the good performance of the biological process.  相似文献   

4.
In this study, the impact of sludge retention time (SRT) on sludge characteristics and microbial community and the effect on membrane fouling in membrane bioreactor (MBR) was investigated. The results show that MBR with longer SRT has less fouling propensity, in agreement with other studies, despite the fact that the MBR with longer SRT contained higher MLSS and smaller particle size. However, much more soluble microbial products (SMPs) were released in MBR with shorter SRT. More slime on the membrane surface was observed in MBR with shorter SRT while sludge cakes formed on the membrane surface in MBR with longer SRT. The results show that SMP contributes to the severe fouling observed in MBR with shorter SRT, which is in agreement with other studies showing that SMPs were the major foulants in MBR. Under different SRTs of operation, the bacterial community structures of the sludge obtained by use of polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were almost identical, but those on the membrane surface differed substantially. It suggests that, although SRT has impact on sludge characteristics, it doesn't affect the microbial community in the suspension.  相似文献   

5.
The aims of the present work were to improve the biodegradation of the endocrine disrupting micro pollutant, bisphenol A (BPA), used as model compound in an activated sludge system and to underline the importance of modelling the system. Previous results have shown that BPA mainly is degraded under aerobic conditions. Therefore the aerobic phase time in the BioDenitro process of the activated sludge system was increased from 50% to 70%. The hypothesis was that this would improve the biodegradation of BPA. Both the influent and the effluent concentrations of BPA in the experiment dropped significantly after increasing the aerobic time. From simulations with a growth-based biological/physical/chemical process model it was concluded that although the simulated effluent concentration of BPA was independent of the influent concentration at steady-state, the observed drop in effluent concentrations probably was caused by either a larger specific biomass to influent BPA ratio, improved biodegradation related to the increased aerobic phase time, or a combination of the two. Thereby it was not possibly to determine if the increase in aerobic phase time improved the biodegradation of BPA. The work underlines the importance of combining experimental results with modelling when interpreting results from biodegradation experiments with fluctuating influent concentrations of micro pollutants.  相似文献   

6.
Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment for effective solids-liquid separation. However, a common problem encountered with MBR systems is fouling of the membrane resulting in frequent membrane cleaning and replacement which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be improved by understanding the shear stress over the membrane surface. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the shear stress in an MBR. Nevertheless, proper experimental validation is required to validate CFD simulation. In this work experimental measurements of shear stress induced by impellers at a membrane surface were made with an electrochemical approach and the results were used to validate CFD simulations. As good results were obtained with the CFD model (<9% error), it was extrapolated to include the non-Newtonian behaviour of activated sludge.  相似文献   

7.
This work compares continuous vs intermittent UASB reactors inoculated with flocculent sludge for the treatment of dairy effluents. The effects of effluent recirculation on the performance of intermittent reactors were assessed as well as the differences in specific methanogenic activity (SMA) with different substrates for the biomass from continuous and intermittent UASB reactors. Compared to the continuous operation the intermittent operation resulted in higher methanization of the removed COD (64-78% and 65-88%, respectively) whilst the effluent recirculation presented beneficial effects when applied during the stabilization period and was clearly detrimental when applied during the feed period of the intermittent operation. The SMA tests showed that the intermittent operation causes a shift in the microbial populations towards a better adaptation for the degradation of complex substrates confirmed by the meaningfull contribution of methane production through a pathway other than acetoclastic methanogenesis observed in the biomass taken from intermittent UASB reactors.  相似文献   

8.
This paper presents the methodology and application underlying the Kinneret Watershed Analysis Tool (KWAT), developed for flow and contaminant predictions for Lake Kinneret (the Sea of Galilee) watershed located in northern Israel. Lake Kinneret watershed is about 2730 km2 (2,070 in Israel, the rest in Lebanon), inhabited by about 200,000 people organized in 25 municipalities, and three cities (the Israeli part). The model aims to predict flow and contaminant transports within the watershed, down to its outlet-Lake Kinneret, the most important surface water resource in Israel. The model is comprised of two sections: quantity and quality. The objective of the quantity section is to tune the values of a vector of coefficients alpha that multiply the average rainfall time series intensity I(t) (the input) imposed on given sub-sets (i.e., cells) of the basin so as to calibrate their outlet flows Q(t); the quality section then uses these optimal flows Q(t) and the effective optimal rainfall intensities to adjust the values of a vector of coefficients beta so as to calibrate the sub-watersheds outlet concentrations C(t). The model uses decision trees coupled with a genetic algorithm for optimally tuning the KWAT coefficients for each of the watershed cells, which taken together comprise the flow and contamination amounts measured at the watershed outlet.  相似文献   

9.
To find an efficient biological method to solubilize waste activated sludge (WAS) from the biological wastewater treatment process, several strains of thermophilic bacteria capable of solubilizing WAS were isolated from sewage sludge compost. The culture supernatants of the isolates were able to lyse vegetable bacterial cells and the lytic activity mainly came from the exoenzyme produced by the isolates. The culture supernatants of the different isolates showed different lysis characteristics. The factors affecting bacterial cell lysis were investigated using E. coli as a model bacterium. The E. coli cells were lysed easily at higher temperature (60 degrees C or 70 degrees C) while little lytic activity by the supernatants of isolates was observed at lower temperature (50 degrees C). The level of pH also had great influence on the lysis of E. coli cells. The E. coli cells in the early stationary growth phase were easier to lyse than those in the late stationary growth phase or death phase.  相似文献   

10.
Patterns of microbial fatty acids (MFAs) from activated sludge samples were analyzed over one year's operation at the Hamilton Woodward municipal wastewater treatment plant in Canada. The objective was to examine community structure dynamics and to consider the potential for interrelationships between the population dynamics and treatment performance. With the exception of a higher than normal solids discharge on one day, the treatment plant operations were otherwise stable during the year. As such, wastewater temperature appeared to be the dominant influence on the observed dynamics of the MFA community structure. MFA monitoring and analysis was demonstrated as a practical diagnostic tool in community structure trend monitoring. While the findings did suggest potential for full-scale treatment process monitoring, further development is required. Advancement in technique and greater insight for the data interpretation will be made with historical data from continued case studies. In future studies, selective sub-sampling of biomass fractions (settling and dispersed fauna), evolution in the compositional analysis methods, and, ideally, complementary genotypic and classical microscopic analyses on select samples are recommended.  相似文献   

11.
The recently proposed DEAMOX (DEnitrifying AMmonium OXidation) process combines the anammox reaction with autotrophic denitrifying conditions using sulphide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. This paper firstly presents a feasibility study of the DEAMOX process using synthetic (ammonia + nitrate) wastewater where sulphide is replaced by volatile fatty acids (VFA) as a more widespread electron donor for partial denitrification. Under the influent N-NH+4/N-NO3(-) and COD/N-NO3(-) ratios of 1 and 2.3, respectively, the typical efficiencies of ammonia removal were around 40% (no matter whether a VFA mixture or only acetate were used) for nitrogen loading rates (NLR) up to 1236 mg N/l/d. This parameter increased to 80% by increasing the influent COD/N-NO3(-) ratio to 3.48 and decreasing the influent N-NH4 +/N-NO3(-) ratio to 0.29. As a result, the total nitrogen removal increased to 95%. The proposed process was further tested with typical strong nitrogenous effluent such as reject water (total N, 530-566 mg N/l; total COD, 1530-1780 mg/l) after thermophilic sludge anaerobic digestion. For this, the raw wastewater was split and partially ( approximately 50%) fed to a nitrifying reactor (to generate nitrate) and the remaining part ( approximately 50%) was directed to the DEAMOX reactor where this stream was mixed with the nitrified effluent. Stable process performance up to NLR of 1,243 mg N/l/d in the DEAMOX reactor was achieved resulting in 40, 100, and 66% removal of ammonia, NOx(-), and total nitrogen, respectively.  相似文献   

12.
Start-up of a continuously stirred tank reactor for bio-hydrogen production under different initial organic loading rate (OLR) of 3, 7 and 10 kgCOD/m3 d, respectively, was carried out with sewage sludge as inoculum. Molasses wastewater was used as substrate and hydraulic retention time was kept at 6 h. This study aimed to assess OLR on the formation of fermentation types and the structure of microbial communities during the start-up period. It was found that at an initial OLR of 7 kgCOD/m3 d and an initial biomass of 6.24 gVSS/L, an equilibrial microbial community of ethanol-type fermentation could be established within 30 days. The observed average specific hydrogen production rate was 276 mLH2/gVSS d, which was 40% higher than that of the one acclimated with 3 kgCOD/m3 d. Based on denaturing gradient gel electrophoresis profiles, significant microbial population shifts took place at the first 15 days, but a longer period up to 30 days was required to establish a microbial community with stable metabolic activity.  相似文献   

13.
The effect of limiting phosphorus (P) in activated sludge was investigated in laboratory-scale sequencing batch reactors (SBRs). Correlative microscopy revealed that P-limitation (COD:N:P = 100:5:0.05) leads to morphological changes in floc structure and the composition of extracellular polymeric substances (EPS). This was found to be accompanied by expression of quorum-sensing in an acyl homoserine lactone bioassay. Differential gene expression in relation to P-limitation was examined in a global profile using the Affymetrix Escherichia coli antisense genomic microarray. Three separate experiments were conducted where the impact of P-limitation was examined under batch conditions and in SBRs at stable operating conditions and within 3-7 days following a down-shift in P. Significant changes in open reading frames (ORF) and intergenic regions based on the E. coli microarray were observed. Several genes associated with cell structure, including slt, wbbH, fimH, amB, rfaJ and slp were found to be expressed. Quorum regulated genes were also found to be expressed including psiF which is known to be induced by P-starvation (92% confidence level; 1.45 log ratio).  相似文献   

14.
Anaerobic Ammonium Oxidation (ANAMMOX) is a novel biological nitrogen removal process, which is regarded as the most economical process at present. In this paper, two lab-scale UASB reactors, one of which was inoculated with the mixture of anaerobic sludge and aerobic sludge, the other with river sediments, were started up, using the inorganic synthetic water containing ammonium and nitrite as influent. After 421 days' and 356 days operation respectively, the ammonium removal efficiencies in two reactors reached 94% and 86% respectively, the total nitrogen volumetric loading rates were 2.5 and 1.6 kgN/m3 x d. ANAMMOX granules were obtained in both reactors; the color of most granules was brown, but some of them were red. Based on the observation and studies on the microstructure of the granules, three kinds of ANAMMOX granular sludge formation mechanisms were proposed: adhering biofilm and disintegrated granular core mechanism, adhering biofilm and inorganic core mechanism and the self-coherence mechanism. For phylogenetic characterization of anaerobic ammonium oxidizers, 16S rDNA approach was performed using Planctomycetales-specific PCR amplification. The dominant anammox bacteria occupied more than 90% of Planctomycetales-specific bacteria, and 27% of all bacteria in reactors. The dominant anammox bacteria distantly related to all currently reported candidate anammox genera. Functional gene of amoA was analyzed to investigate the 'aerobic' ammonium-oxidizing bacteria in beta-Proteobacteria. The 'aerobic' ammonium-oxidizing bacteria were more diverse than anammox bacteria, but most of them clustered in anoxic ammonium-oxidizing Nitrosomonas eutropha/europaea groups. The composition of 'aerobic' ammonium-oxidizing bacteria is only 2% of all of bacteria in reactors.  相似文献   

15.
Classical control has serious limitations when faced with solids separation problems in the activated sludge process. Lack of knowledge about the mechanisms involved in the imbalance within the different microbiological communities implies that a general solution to these undesirable situations has not yet been provided. However, operators have to make decisions based on their experience and intuition to solve the problem (or at least to minimise the effects). The acquisition and registration of the knowledge learnt from each new experience can be decisive when solving similar problems in the future. Case-based reasoning (CBR) is an advanced technique for knowledge management in complex systems that uses past experiences to solve brand new situations. Previous simplified proposals in this field have exposed limitations, but this paper describes a new approach to CBR, considering the dynamics and the complexity of solids separation problems.  相似文献   

16.
Removal and recovery of phosphorus from sewage in form of MAP (magnesium ammonium phosphate) have attracted attention from the viewpoint of eutrophication prevention and phosphorus resource recovery as well as scaling prevention inside digestion tanks. In this work, phosphorus recovery demonstration tests were conducted in a 50 m3/d facility having a complete mixing type reactor and a liquid cyclone. Digested sludge, having 690 mg/L T-P and 268 mg/L PO4-P, was used as test material. The T-P and PO4-P of treated sludge were 464 mg/L and 20 mg/L achieving a T-P recovery efficiency of 33% and a PO4-P crystallization ratio of 93%. The reacted phosphorus did not become fine crystals and the recovered MAP particles were found to be valuable as a fertilizer. A case study in applying this phosphorus recovery process for treatment of sludge from an anaerobic-aerobic process of a 21,000 m3/d sewage system, showed that 30% of phosphorus concentration can be reduced in the final effluent, recovering 315 kg/d as MAP.  相似文献   

17.
Dark fermentation shares many features with anaerobic digestion with the exception that to maximize hydrogen production, methanogens and hydrogen-consuming bacteria should be inhibited. Heat treatment is widely applied as an inoculum pre-treatment due to its effectiveness in inhibiting methanogenic microflora but it may not exclusively select for hydrogen-producing bacteria. This work evaluated the effects of heat treatment on microbial viability and structure of anaerobic granular sludge. Heat treatment was carried out on granular sludge at 100 °C with four residence times (0.5, 1, 2 and 4 h). Hydrogen production of treated sludges was studied from glucose by means of batch test at different pH values. Results indicated that each heat treatment strongly influenced the granular sludge resulting in microbial communities having different hydrogen productions. The highest hydrogen yields (2.14 moles of hydrogen per mole of glucose) were obtained at pH 5.5 using the sludge treated for 4 h characterized by the lowest CFU concentration (2.3 × 10(3)CFU/g sludge). This study demonstrated that heat treatment should be carefully defined according to the structure of the sludge microbial community, allowing the selection of highly efficient hydrogen-producing microbes.  相似文献   

18.
A submerged membrane bioreactor (SMBR) and a conventional activated sludge system (CAS) were compared in parallel over a period of more than 260 days on treating synthetic ammonia-bearing inorganic wastewater without sludge purge under decreased hydraulic retention times (HRTs). Conversion of NH4(+)-N to NO3(-)-N was achieved with an efficiency of over 98% at an HRT > or = 10 h in the SMBR, while similar performance was obtained at an HRT > or = 20 h in the CAS. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR) amplified 16S rDNA was used to monitor variations of community structures in the two systems. With the prolongation of operation, the number of DGGE bands in the SMBR gradually increased from the initial 11 bands to the final 22 bands, whereas that in the CAS varied in a range between 13 and 183 Sequence analysis indicates that Nitrosomonas sp. and Nitrospira sp. were the dominating nitrification species responsible for ammonia and nitrite oxidation, respectively. Heterotrophic bacteria like Pseudomonas sp. and Flavobacteria sp. existed in both of the systems although only inorganic wastewater was fed. Substantive accumulation of extracellular polymeric substances (EPS) in the SMBR was confirmed by scanning electron microscopy and EPS analysis.  相似文献   

19.
本文介绍了牡丹江水能资源的开发与利用的现状和前景,对原有小水电站存在的问题及解决方案进行了分析探讨,论述了牡丹江建设国家水电电气化县的资源优势。  相似文献   

20.
Impact of model-based operation of nutrient removing SBRs on the stability of activated sludge population was studied in this contribution. The optimal operation scenario found by the systematic model-based optimisation protocol of Sin et al. (Wat. Sci. Tech., 2004, 50(10), 97-105) was applied to a pilot-scale SBR and observed to considerably improve the nutrient removal efficiency in the system. Further, the process dynamics was observed to change under the optimal operation scenario, e.g. the nitrite route prevailed and also filamentous bulking was provoked in the SBR system. At the microbial community level as monitored by DGGE, a transient shift was observed to gradually take place parallel to the shift into the optimal operation scenario. This implies that the model-based optimisation of a nutrient removing SBR causes changes at the microbial community level. This opens future perspectives to incorporate the valuable information from the molecular monitoring of activated sludge into the model-based optimisation methodologies. In this way, it is expected that model-based optimisation approaches will better cover complex and dynamic aspects of activated sludge systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号