首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computer modelling has been used in the last 15 years as a powerful tool for understanding the behaviour of activated sludge wastewater treatment systems. However, computer models are mainly applied for domestic wastewater treatment plants (WWTPs). Application of these types of models to industrial wastewater treatment plants requires a different model structure and an accurate estimation of the kinetics and stoichiometry of the model parameters, which may be different from the ones used for domestic wastewater. Most of these parameters are strongly dependent on the wastewater composition. In this study a modified version of the activated sludge model No. 1 (ASM 1) was used to describe a tannery WWTP. Several biological tests and complementary physical-chemical analyses were performed to characterise the wastewater and sludge composition in the context of activated sludge modelling. The proposed model was calibrated under steady-state conditions and validated under dynamic flow conditions. The model was successfully used to obtain insight into the existing plant performance, possible extension and options for process optimisation. The model illustrated the potential capacity of the plant to achieve full denitrification and to handle a higher hydraulic load. Moreover, the use of a mathematical model as an effective tool in decision making was demonstrated.  相似文献   

2.
This paper presents the characterisation procedure of different types of sludge generated in a wastewater treatment plant to be reproduced in a mathematical model of the sludge digestion process. The automatic calibration method used is based on an optimisation problem and uses a set of mathematical equations related to the a priori knowledge of the sludge composition, the experimental measurements applied to the real sludge, and the definition of the model components. In this work, the potential of the characterisation methodology is shown by means of a real example, taking into account that sludge is a very complex matter to characterise and that the models for digestion also have a considerable number of model components. The results obtained suit both the previously reported characteristics of the primary, secondary and mixed sludge, and the experimental measurements specially done for this work. These three types of sludge have been successfully characterised to be used in complex mathematical models.  相似文献   

3.
Natural methods such as lagoon plants are often a reasonable and economically interesting alternative to the technically intensified methods, particularly in rural areas with connection sizes up to a maximum of 5,000 PE. In the last 30 years, numerous analyses yielded information about the biological degradation in natural wastewater treatment plants, on the basis of which respective directives were created. Lately, there are reports that in rural areas of Germany there are a large number of older, mostly unaerated wastewater ponds which cause problems with the observation of the effluent values. This report will give some reasons for non-efficient purification performance (unsuitable design of the ponds, incomplete mixing of aerated ponds, insufficient maintenance, sludge removal etc.). After presenting some operational results several methods of optimisation will be discussed (efficient sludge removal, optimisation of the flow behaviour, combination with a technical step, etc.). Some examples like re-construction into a SBR system are presented at the end.  相似文献   

4.
In this study we applied bioassay using Chinese hamster ovary (CHO) cells with a heat shock protein (HSP) 47 promoter to the effluent of the wastewater treatment plants in Sapporo and we observed the statistically significant HSP production. This implied the effluent contained some organic matter which can stress the CHO cells. To investigate the possible causes of the toxicity of the effluent, we applied the assay to the rejected water from the sludge treatment plant, the mixtures of sewage and rejected water. The evolution of HSP production during the aerobic decay process and thickening process of sludge was also examined. These assay results showed that dissolved microbial products generated and/or released from activated sludge during its decay process in the aeration tank and during thickening and dewatering process in the sludge treatment train contributed to develop HSP production. The proteomics analysis was also applied to the effluent and detected the production of elongation factor 1beta. This result implies that the effluent from wastewater treatment plants may cause changes in cell proteins involved in allergic reaction.  相似文献   

5.
The diversity of bacterial groups in activated sludge from large- and small-scale wastewater treatment plants was explored by barcoded pyrosequencing of 16S rRNA gene. Activated sludge samples (three small and 17 large scale) were collected from 12 wastewater treatment plants to clarify precise taxonomy and relative abundances. DNA was extracted, and amplified by 4 base barcoded 27f/519r primer set. The 454 Titanium (Roche) pyrosequences were obtained and analyses performed by Quantitative Insight Into Microbial Ecology (QIIME) with around 100,000 reads. Sequence statistics were computed, while constructing a phylogenetic tree and heatmap. Computed results explained total microbial diversity at phylum and class level and resolution was further extended to Operational Taxonomic Unit (OTU) based taxonomic assignment for investigating community distribution based on individual sample. Composition of sequence reads were compared and microbial community structures for large- and small-scale treatment plants were identified as major phyla (Proteobacteria and Bacteroidetes) and classes (Betaproteobacteria and Bacteroidetes). Also, family level breakdowns were explained and differences in family Nitrospiraceae and phylum Actinobacteria found at their species level were also illustrated. Thus, the pyrosequencing method provides high resolution insight into microbial community structures in activated sludge that might have been unnoticed with conventional approaches.  相似文献   

6.
A biofilm model is presented for process engineering purposes--wastewater treatment plant design, upgrade and optimisation. The model belongs in the 1D dynamic layered biofilm model category, with modifications that allow it to be used with one parameter set for a large range of process situations. The biofilm model is integrated with a general activated sludge/anaerobic digestion model combined with a chemical equilibrium, precipitation and pH module. This allows the model to simulate the complex interactions that occur in the aerobic, anoxic and anaerobic layers of the biofilm. The model has been tested and is shown to match a variety of design guidelines, as well as experimental results from batch testing and full-scale plant operation. Both moving bed bioreactors (MBBR) and integrated fixed film activated sludge (IFAS) systems were simulated using the same model and parameter set. A new steady-state solver generates fast solutions and allows interactive design work with the complex model.  相似文献   

7.
Two-stage activated sludge plants succeed in stable treatment efficiency concerning carbon removal and nitrification with far less reactor tank volume than conventional single stage systems. In case of large treatment plants this fact is of great economic relevance. Because of the very small specific volume of these two-stage treatment plants in comparison with low loaded single-stage plants, internal cycles have to be applied to ensure sufficient nitrogen removal. Due to these internal cycles two stage activated sludge plants offer many possibilities in terms of process management which results in new process optimisation procedures as compared to conventional single-stage nutrient removal treatment plants. The proposed extension concept for the Main Treatment Plant of Vienna was validated with pilot plant investigations especially with regard to nitrogen removal where it proved to comply with the legal requirements. The operation of the treatment plant can easily be adapted to changes in temperature and sludge volume index occurring in full scale practice. Sludge retention time and aerobic volume in the second stage are controlled in order to secure sufficient nitrification capacity and to optimise nitrogen removal by means of the variation of the loading conditions for the two stages. The investigations confirmed that the specific two-stage activated sludge concept applied in Vienna is an economically advantageous alternative for large wastewater treatment plants with stringent requirements for nitrification and nutrient removal.  相似文献   

8.
The effect of potassium cyanide (KCN) on nitrification processes in municipal wastewater treatment plants was studied by batch nitrification tests, which indicated that nitrification processes tend to be inhibited at a lower KCN concentration than the present discharge standard to sewerage. The experiment of the biosensor using nitrifying bacteria was also conducted for continuous monitoring of nitrification inhibitor in influent wastewater, and demonstrated that the biosensor can detect KCN at as low as EC10 of the abovementioned batch nitrification test. Moreover, to determine the effectiveness of application of the biosensor to avoid the impact of KCN due to an accidental spillage in a sewerage system, KCN was intentionally injected into the experimental models of activated sludge process equipped both with and without the biosensor. The model with the biosensor that could detect KCN could divert the wastewater including KCN to a refuge tank, which resulted in the avoidance of upset of the activated sludge process. On the other hand, the model without the biosensor was upset in the nitrification process due to KCN. Such differences demonstrate the effectiveness of the biosensor applied to countermeasures of an accidental spillage of toxic chemicals to avoid upset of nitrification in municipal wastewater treatment plants.  相似文献   

9.
Today wastewater treatment plants are evaluated not only in terms of their treatment efficiency but also concerning their energy efficiency. Increasing energy efficiency can be realized either through operational optimisation or by realising an already existing potential for energy generation on-site. The main source of energy at a municipal wastewater treatment plant is the biogas produced in the anaerobic sludge digester. Studies indicate excess digester capacities of about 20% in Germany available for co-fermentation of organic substrates other than sewage sludge. This paper presents an example of a municipal wastewater treatment plant going towards an energy self-sufficient operation and even a surplus energy production as the result of an increasing co-fermentation of sludge from grease skimming tanks. In 2005 on average 113% of the electricity consumed for plant operation was generated on-site in gas engines. Co-fermentation of about 30% (related to the total dry residue input) of grease interceptor sludge in the presented case does not only effect a 4-times increased gas yield, but also an intensified 20% higher anaerobic degradation of the organic matter of the sewage sludge and thus having a positive influence not only on the energy and financial balance but also on the anaerobic sludge stabilisation with respect to the degradation degree of the organic fraction.  相似文献   

10.
20世纪50年代以来,活性污泥法数学模型的研究取得了重大进展,它在污水处理厂的设计、运行和管理等方面发挥着日益重要的作用。本文从模型的机理、功能和应用等方面进行了全面的综述,详细介绍了发展进程中具有重要意义的几种模型,分析比较了各自的优点和不足。最后分析讨论了ASM数学模型研究与应用中存在的问题,提出了今后活性污泥法模型和软件可能的研究方向和发展趋势。  相似文献   

11.
城市污水处理厂污泥热值及影响因素分析   总被引:3,自引:0,他引:3  
以重庆市主城区城市污水处理厂污泥为研究对象,测定了污泥的热值并分析了影响污泥热值的主要因素,探讨了水分对热值利用的影响。结果表明:元素分析法和量热仪法测定的污泥热值较吻合;污水水质、排水体制、污水及污泥处理工艺通过影响污泥挥发分的含量而影响污泥热值,建议消化污泥和合流制区域污水处理厂污泥不宜采用焚烧处理。污水处理厂污泥具有自持燃烧特性时的最高含水率为68%;通过元素分析发现,不同污水处理厂污泥挥发分元素的计量组成基本一致,可用计量化学式CH1.72O0.55N0.12S0.03粗略地表示重庆市主城区污水处理厂污泥挥发分的组成。  相似文献   

12.
13.
Hydrogen sulphide (H2S) represents one of the main odorant gases emitted from wastewater treatment plants (WWTP) and a mathematical model can be a fast and low cost tool to estimate its emission. In this work H2S emission rates in a WWTP, composed of an up-flow anaerobic sludge blanket (UASB) reactor and an aerobic biofilter (BF), are estimated using four mathematical models available in the literature (AP-42, GPC, TOXCHEM + and WATER8). The results show that the GPC model leads to the best agreement with the experimental data, except for the biofilter due to its lack of capability to include biodegradation as a H2S removal process. On the other hand, the AP-42 and WATER8 models showed a slightly better ability to predict H2S removal in the biofilter than the TOXCHEM + model, as all models underestimate the H2S concentration decay.  相似文献   

14.
Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.  相似文献   

15.
The operation of very small biological wastewater systems is strongly influenced by the patterns of wastewater generation. The absence of people in the connected building(s) during holidays or off-season leads to a system underload, other circumstances however may lead to an overload. Experiments have been carried out to display the effects of no-feed conditions on activated sludge biomass and its microbial activity during a 24 hour period after re-feeding. The decrease of the biomass during idle periods can be modelled by a first order equation. The initial specific oxygen uptake rate (OUR) of the remaining biomass decreased with the duration of the preceding no-feed sequence. Four different laboratory-scale treatment plants were operated to demonstrate the system performance when re-started after a break period of 24 and 52 days respectively. The effluent concentration after a break of 52 days had not been sufficient as compared to the discharge requirements given by German laws. In addition a full scale trickling filter was monitored, while the connected building accommodated a maximum of 40 guests interrupted by times with no guest at all. Conclusions are drawn from the experimental results and from literature, giving some hints on how to manage the impacts of varying loads at very small wastewater treatment plants.  相似文献   

16.
对污泥厌氧消化技术在国内外的应用及发展情况作了简单介绍.通过与其他污泥处理工艺对比,分析了污泥厌氧消化的优缺点、污泥厌氧消化工艺的费用与收益.指出污泥厌氧消化工艺是一种可持续的实用技术,理应成为城市污水处理厂污泥稳定化处理的首选工艺.认为应对现行的《城市污水处理及污染防治技术政策》进行修改,鼓励有条件的污水处理厂在选择污泥处理工艺时优先考虑厌氧消化技术.  相似文献   

17.
18.
To study process performance and population dynamics in activated sludge, a pilot-scale Membrane Bioreactor (MBR) was installed in a municipal wastewater treatment plant (Aubergenville, France). Since no solids losses occur in the MBR effluent, the sludge residence time (SRT) can be: i) easily controlled by means of the sludge withdrawal, and ii) dissociated from the hydraulic residence time (HRT). A complete characterization of this activated sludge system was performed at three sludge ages (5, 10 and 20 days). Raw and treated wastewater quality, as well as sludge concentration, was analyzed, nucleic probe analysts was performed to determine the heterotrophic and nitrifier populations, and the results were compared to the output from a multispecies model that integrates substrate removal kinetics and soluble microbial products (SMP) production/consumption. This paper presents an integrated analysis of the activated sludge process based on chemical, molecular biology, and mathematical tools. The model was able to describe the MBR system with a high degree of accuracy, in terms of COD removal and nitrification, as well as sludge production and population dynamics through the ratio of active nitrifters/bacteria. Both steady-state and transient conditions could be described accurately by the model, except for technical problems or sudden variations in the wastewater composition.  相似文献   

19.
Nitrite-oxidizing bacteria of the genus Nitrospira are key nitrifiers in wastewater treatment plants. Pure cultures of these organisms are unavailable, but cultivation-independent molecular methods make it possible to detect Nitrospira-like bacteria in environmental samples and to investigate their ecophysiology. Comprehensive screening of natural and engineered habitats and of public databases for 16S rRNA sequences of Nitrospira-like bacteria revealed a surprisingly high biodiversity in the genus Nitrospira, which comprises at least four phylogenetic sublineages. All Nitrospira-like bacteria detected in wastewater treatment plants belonged to the sublineages I and II. Subsequently, the population dynamics of different Nitrospira-like bacteria were monitored, by quantitative fluorescence in situ hybridization with rRNA-targeted probes, confocal laser scanning microscopy and digital image analysis, during incubation of nitrifying activated sludge in media containing different nitrite concentrations. These experiments showed that Nitrospira-like bacteria, which were affiliated with the phylogenetic sublineages I or II of the genus Nitrospira, responded differently to nitrite concentration shifts. Previously unknown properties of Nitrospira-like bacteria were discovered in the course of an environmental genomics project. Implications of the obtained results for fundamental understanding of the microbial ecology of nitrite oxidizers as well as for future improvement of nutrient removal in wastewater treatment plants are discussed.  相似文献   

20.
混合液污泥浓度与污泥回流系统控制策略研究   总被引:1,自引:0,他引:1  
生物反应池中的混合液污泥浓度(MISS)是活性污泥系统重要的设计与运行参数.在城市污水处理厂日常运行中,应根据运行条件的变化,如进水水质水量的波动、污泥沉降性能的改变等,实施一定的污泥回流控制策略,以保证生物反应池中合理的活性污泥数量,促进系统的稳定高效运行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号