首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了解非晶合金的切削机理,对大块非晶合金Zr41.2Ti13.8Cu12.5Ni10.0Be22.5进行了不同切削深度的切削实验,然后用扫描电镜、X光衍射仪和测力系统对切屑形态和切削力进行观察和测量。实验结果表明:Zr基非晶合金在受拉的时候,比全脆性材料有更好的塑性表现,其切屑形态独特且具有塑性剪切带特征;主切削力Fz随切削深度的增加而增长,但Fx和Fy则几乎没有变化。  相似文献   

2.
新近研制的大块金属玻璃(BMG)合金有着令人注目的工程性能,如屈服强度高,耐蚀性好等,由于这些合金熔点高,约为1000K,以抗非均质结晶成核能力强,很适合用作金属或陶瓷粒子,以及金属纤维等增强的复合材料的基材,既能使增强剂分布均匀,又能在制取的复合材中使其基体保持玻璃状态。 另一项技术发展,便是将碳纤维置入金属玻璃体中,制成刚度好、重量轻和强度高的复合材。美国加利福尼亚技术学院的学者及同事报道了碳纤维增强的Zr41.2Ti13.6Cu12.5Ni10.0Be22.5 (Vit 1)BMG复合材制备过程和分析检验结果。 直径5m和密度为1.8g/cm3…  相似文献   

3.
采用摩擦焊工艺对Zr41Be22.5Ti14Cu12.5Ni10非晶合金进行焊接,通过优化焊接参数,得到焊接接头。采用XRD、TEM、维氏显微硬度计对试样接头进行了测试。结果表明,优化后的焊接参数可以成功得到焊接接头,试样仍保持非晶特性,且接头力学性能有所增加。采用ANSYS软件对摩擦焊进行温度场数值模拟,可以验证摩擦焊的工艺参数选择合理。  相似文献   

4.
采用XRD、SEM等表征方法研究钨丝增强(Zr41.2Ti13.8Cu12.5Ni10Be22.5)100-xNbx非晶复合材料的力学行为.研究表明,分别加入x=1,3,5,7(atA)的Nb后,制备的复合材料试样基体仍为非晶态:随Nb含量的增加,钨丝增强(Zr41.2Ti13.8Cu12.5Ni10Be22.5)10...  相似文献   

5.
利用电化学极化曲线方法、交流阻抗 (EIS)技术和扫描电子显微镜 (SEM )研究了Mg65Y10 Cu2 5非晶及相应的晶化合金在 3 5 %NaCl溶液中的腐蚀行为。极化曲线测试结果表明 ,非晶合金Mg65Y10 Cu2 5在NaCl溶液中为活性溶解 ,腐蚀反应由阴极反应和阳极反应共同控制。EIS测试表明 ,随着浸泡时间延长 ,非晶合金耐蚀性下降 ,EIS由 3个时间常数变为 2个时间常数。SEM测试表明 ,非晶合金经过 2 4h浸泡后 ,表面发生了极为不均匀的腐蚀 ;EDAX能谱表明 ,非晶合金经过浸泡后 ,表面成分发生了较大变化 ,含镁量减少 ,表面出现了浓度分布不均匀的氧元素。晶化后Mg65Y10 Cu2 5合金的耐蚀性略有提高。探讨了非晶合金在 3 5 %NaCl溶液中的腐蚀机理  相似文献   

6.
1 INTRODUCTIONThebulkamorphousalloysofMg TM Ln ,Ln Al TM ,Zr Al TM ,Hf Al TMandTi Zr TMwerepreparedbyInoueandhisco workerssince 1990 [1] .Thec  相似文献   

7.
采用低纯度的原料,通过电弧熔炼铜模铸造法制备了直径达10mm的Zr56.6Cu17.3Ni12.5Al9.6Ti4非晶合金圆棒。该合金玻璃转变温度tg=385.8℃,晶化温度tx=464.2℃,过冷液相区温差Δtx=78.4℃,约化玻璃温度trg(tg/tmL)=0.62。以基于DTA的合金凝固点偏移的方法确定该合金的临界冷却速度Rc=7.1℃/s,低于商业合金Vit.105合金的临界冷速(约为10℃/s)。楔形试样对比结果显示:Zr56.6合金试样中的非晶组织区域明显大于Vit.105合金的,预示前者具有较好的实际玻璃形成能力。以上结果表明,Zr56.6Cu17.3Ni12.5Al9.6Ti4合金是Zr Al Ni Cu Ti系中玻璃形成能力最强的合金之一。  相似文献   

8.
通过浸泡法、动电位极化法、扫描电镜(SEM)、能谱分析(EDX)和X射线光电子能谱(XPS),研究了Zr_(56)Cu_(19)Ni_(11)Al_9Nb_5非晶合金分别在3.5%的NaCl、1mol/L的NaOH和1mol/L的H_2SO_4溶液中的腐蚀和电化学性能。结果表明,试样在3.5%的NaCl、1mol/L的NaOH和1mol/L的H_2SO_4溶液中浸泡2 256h后,肉眼未发现明显腐蚀。SEM观察发现试样发生局部腐蚀,耐腐蚀性在3.5%的NaCl溶液中最差,在1mol/L的NaOH溶液中次之,在1mol/L的H_2SO_4溶液中最好。动电位极化测试结果表明,在3.5%的NaCl溶液中未发生钝化,由于Cl~-的破坏作用,钝化膜发生局部溶解,腐蚀电流密度最大,耐腐蚀性最差。在1mol/L的NaOH和1mol/L的H_2SO_4溶液中发生钝化,生成致密而稳定的钝化膜,且在1mol/L的H_2SO_4溶液中自腐蚀电位和点蚀电位更高,腐蚀电流密度更小,钝化区更宽,钝化膜的稳定性和保护性能更好,耐腐蚀性更好。EDX和XPS分析表明,试样在3.5%的NaCl、1mol/L的NaOH和1mol/L的H_2SO_4溶液中的腐蚀产物主要为ZrO_2、Cu_2O、Al_2O_3、NiO和Nb_2O_5。  相似文献   

9.
利用铜模铸造法制备了直径为3mm的Ti_(35)Zr_(30)Be_(24)Cu_(7.5)Co_(3.5)块状非晶合金。在销-盘磨擦磨损试验机上测试了该非晶合金的磨擦磨损行为,采用扫描电镜(SEM)观察了非晶合金的磨损表面形貌,分析了该非晶合金的磨损机理。结果表明,随着载荷由10N增加到40N,非晶试样的磨损量增大,摩擦因数先增大后减小;磨损形貌由犁沟和部分剥落转变为以局部剪切为特征的塑性流变;磨损机理由磨粒磨损逐步转变为疲劳磨损。  相似文献   

10.
Zr65Al10Ni10Cu15非晶合金的超塑性1990年代初发现具有60K以上宽的过冷液相区和强的非晶形成能力的Zr基合金,能够通过非晶粉末固结法或在低冷却速度下铸造来生产大块非晶合金材料。研究了具有很大过冷液相区(105K)的Zr65Al10Ni...  相似文献   

11.
通过浸泡法、动电位极化法、扫描电镜、能谱分析等研究了Zr_(56)Cu_(19)Ni_(11)Al_9Nb_5非晶合金试样在不同浓度HCl溶液中的腐蚀和电化学性能。浸泡试验结果表明,非晶合金试样分别在0.01、0.1和1mol/L的HCl溶液中浸泡2 256h以及在2mol/L HCl溶液中浸泡720h后均未发现明显腐蚀,显示良好的耐腐蚀性。随着HCl溶液浓度进一步增加,非晶合金耐腐蚀性变差。在5mol/L HCl溶液中浸泡168h后腐蚀严重。动电位极化测试表明,随着HCl浓度增加,自腐蚀电位逐渐降低,从0.402V(vs.SCE)逐渐降低到-0.245V(vs.SCE),腐蚀电流密度逐渐增大,从5.212×10~(-8 )A/cm~2增加至6.095×10~(-5 )A/cm~2,耐腐蚀性逐渐变差,与浸泡试验结果一致。扫描电镜、能谱分析表明腐蚀产物主要为ZrO_2、Cu_2O等氧化物。  相似文献   

12.
利用铜模铸造法获得了直径为2 mm的Ti35Zr30Be27.5Cu7.5块体非晶合金。采用X射线衍射(XRD)、扫描电镜(SEM)、差氏扫描量热仪(DSC)及压缩试验等方法研究了非晶合金的相结构、显微组织和热稳定性,以及热处理对其压缩强度及塑性的影响。结果表明:在553和583 K温度下分别保温5 h后,实验合金仍保持为非晶态;在613 K保温1 h后,有晶化相出现。Ti35Zr30Be27.5 Cu7.5非晶合金在583 K下保温1 h后其塑性变形量达到了6.57%,较热处理前提高了1倍,且保持了热处理前的强度,屈服强度和抗压强度分别为1921 MPa,2169 MPa。随着热处理温度的提高,非晶相含量减少,合金断裂强度、塑性变形量随之降低;同时合金断裂方式由韧性断裂转变为脆性断裂。  相似文献   

13.
使用铜模铸造法制备了不同直径的(Ti_(0.361)Zr_(0.332)Ni_(0.058)Be_(0.249))_(91)Cu_9非晶合金。分别采用X射线衍射仪、扫描电镜、力学性能试验机和差示扫描量热仪对合金的相组成、断口、力学性能以及热物性进行了研究。结果表明:所制备的样品均为单一的非晶结构,压缩断口的脉状纹密度随浇注直径的降低而增加。在屈服强度和断裂强度变化不大的情况下,材料的塑性应变由浇注直径为4 mm时的0.33%增加至浇注直径为2 mm时的1.21%。计算和推断了三种浇注直径下的放热焓和自由体积数量,并通过自由体积理论解释了浇注尺寸对材料塑性的影响。  相似文献   

14.
块状非晶合金CU-Zr-Ti-Sn在3.5%NaCl溶液中的腐蚀行为   总被引:3,自引:0,他引:3  
利用电化学极化曲线方法和电化学阻抗谱(EIS)技术研究了Cu60Zr30Ti10和(Cu60Zr30Ti10)99Sn1块状非晶合金及其晶化后在3.5%NaCl溶液中的腐蚀行为.极化曲线测试结果表明,(Cu60Zr30Ti10)99Sn1非晶合金在3.5%NaCl溶液中的阳极极化衄线有一定的钝化倾向,且其阳极电流密度较Cu60Zr30Ti10非晶合金的阳极电流密度有所降低;同时EIS结果显示,其电化学反应电阻Rt较Cu60Zr30Ti10的Rt值有所增大,说明添加1%Sn使非晶合金Cu60Zr30Ti10的耐蚀性能有所改善.相应成分晶化后的合金与非晶合金的极化曲线相比较,阳极极化表现出较大的钝化倾向,且阳极电流密度略有降低.晶化后合金的EIS测试显示有两个时间常数,即由高频容抗弧和低频容抗弧构成.晶化后合金与其非晶合金相比较,电化学反应电阻见明显增大,表明晶化后合金的耐蚀性能有所提高。  相似文献   

15.
采用铜模喷铸法成功制备出内含β-Ti(Zr,Nb)晶体相的Ti_(48)Zr_(20)Nb_(12)Cu_5Be_(15)内生相非晶合金,在室温环境下对其进行准静态和动态压缩力学性能测试,用S-4800型扫描电镜(SEM)对压缩试样断口进行观察,并对不同应变率下的力学性能进行对比。结果表明,内生相非晶合金的结构为非晶基体和在非晶基体上均匀分布着的β-Ti(Zr,Nb)晶体相组成。Ti_(48)Zr_(20)Nb_(12)Cu_5Be_(15)内生相非晶合金在准静态压缩时,随应变率的增加抗压强度有明显的提高,存在应变率硬化现象,表现出与一般非晶合金体系不同的应变率效应;在动态压缩条件下,动态抗压强度随着应变率的提高也有较明显的增加,表现为应变率硬化效应。由于内生相非晶合金在动态压缩条件下的绝热温升效应和非晶的碎化,导致在室温条件下Ti_(48)Zr_(20)Nb_(12)Cu_5Be_(15)内生相非晶合金的动态压缩抗压强度和应变低于准静态压缩抗压强度和应变。  相似文献   

16.
以Zr65Al7.5Ni10Cu12.5Ag5块体非晶合金作为研究对象,采用界面压痕技术和扫描电子显微镜,分别对铸态、轧制态以及轧制-退火态试样压痕下方的剪切带形貌进行了研究。实验结果表明,铸态试样以半圆形剪切带为主,同时存在少量的射线状剪切带,并且形貌比较规则;轧制态试样的剪切带形貌变得很不规则,很难分辨半圆形和射线状剪切带,并且随着变形量的增加,剪切带形貌的不规则程度增加;轧制-退火态试样中重新出现了规则的半圆形和射线状剪切带,变形量对剪切带形貌几乎没有影响。这些结果说明,轧制态试样压痕下方剪切带形貌不规则的主要原因是轧制变形使剪切带中自由体积含量显著增加。  相似文献   

17.
非晶合金Mg65Y10Cu25在3.5%NaCl溶液中的腐蚀行为   总被引:5,自引:0,他引:5  
利用电化学极化曲线方法、交流阻抗(EIS)技术和扫描电子显微镜(SEM)研究了Mg65Y10Cu25非晶及相应的晶化合金在3.5%NaCl溶液中的腐蚀行为。极化曲线测试结果表明,非晶合金Mg65Y10Cu25在NaCl溶液中为活性溶解,腐蚀反应由阴极反应和阳极反应共同控制。EIS测试表明,随着浸泡时间延长,非晶合金耐蚀性下降,EIS由3个时间常数变为2个时间常数。SEM测试表明,非晶合金经过24h浸泡后,表面发生了极为不均匀的腐蚀;EDAX能谱表明,非晶合金经过浸泡后,表面成分发生了较大变化,含镁量减少,表面出现了浓度分布不均匀的氧元素。晶化后Mg65Y10Cu25合金的耐蚀性略有提高。探讨了非晶合金在3.5%NaCl溶液中的腐蚀机理。  相似文献   

18.
采用铜模吸铸法将Ti元素添加到Zr65Cu17.5Al7.5Ni10非晶合金中,制备得到直径为3 mm的大块非晶合金。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、示差扫描量热仪(DSC)和微机控制电子式万能试验机等研究半固态处理对Zr60Cu17.5Al7.5Ni10Ti5大块非晶合金的微观组织结构、非晶形成能力、压缩力学性能以及断口形貌的影响。结果表明:半固态处理技术对非晶合金材料的组织结构和力学性能有很大的影响,能够提高非晶合金的强度和塑性;半固态下Zr60Cu17.5Al7.5Ni10Ti5表现出较好的非晶形成能力,表征非晶形成能力的参数Trg为0.618 9,过冷液相区△Tx达到40 K;且当吸铸电压为7 kV时试样的塑性最好,为1.94%,强度为1 487.411 MPa。  相似文献   

19.
采用水冷铜模吸铸法制备内生β-Ti晶体相增塑Ti_(48)Zr_(18)V_(12)Cu_5Be_(17)块体非晶复合材料,研究该材料在半固态温度区间的显微组织演变及其动力学。结果表明:水冷铜模吸铸的铸态组织和半固态等温处理后的水淬组织均由β-Ti晶体相和基体非晶相组成。半固态等温处理温度和保温时间决定着β-Ti相的最终形态,提高等温处理温度将提高β-Ti相的演变速度。β-Ti相晶粒尺寸D~3和保温时间t存在线性关系,生长动力学因子K=3.6μm~3/s,β-Ti相的球化过程是由溶质元素扩散控制的粗化行为。  相似文献   

20.
将Zr52.5Cu17.9Ni14.6Al10Ti5(Vit105)块体非晶合金棒用水砂纸和抛光膏打磨到不同粗糙度,研究表面粗糙度对试样压缩变形行为的影响。结果表明,随着试样表面粗糙度的降低,屈服强度并没有明显变化,但压缩塑性从2.3%提高到4.5%。在扫描电镜下观察断裂试样的侧面发现,塑性越大的试样,剪切带的密度越大。因此,对于非晶合金,要得到较大的塑性,降低表面粗糙度是必要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号