首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于机器视觉钢板表面缺陷检测技术研究   总被引:1,自引:0,他引:1  
钢板表面缺陷严重降低钢板的耐磨性、耐高温性、耐腐蚀性、抗疲劳强度等性能,因此,钢板表面缺陷的检测就显得尤为重要。本文基于机器视觉采用Matlab图像处理技术对钢板表面缺陷进行检测识别。在不同光照条件下采集钢板表面图像,分别进行图像处理,讨论分析不同光照条件和去噪方法对检测结果的影响。首先对缺陷图像进行预处理,然后将预处理后的图像二值化及形态学图像处理,使图像背景与对象图形分离,提取出表面缺陷特征,计算缺陷的面积和周长。通过对图像细化和骨架提取线性缺陷,计算出缺陷长度,并且通过对像素的标定,将像素单位转化为长度或面积单位。实验结果表明该方法具有很好的可靠性和重复性。  相似文献   

2.
机器视觉表面缺陷检测综述   总被引:6,自引:0,他引:6       下载免费PDF全文
目的 工业产品的表面缺陷对产品的美观度、舒适度和使用性能等带来不良影响,所以生产企业对产品的表面缺陷进行检测以便及时发现并加以控制。机器视觉的检测方法可以很大程度上克服人工检测方法的抽检率低、准确性不高、实时性差、效率低、劳动强度大等弊端,在现代工业中得到越来越广泛的研究和应用。方法 以机器视觉表面缺陷检测为研究对象,在广泛调研相关文献和发展成果的基础上,对基于机器视觉在表面缺陷检测领域的应用进行了综述。分析了典型机器视觉表面缺陷检测系统的工作原理和基本结构,阐述了表面缺陷视觉检测的研究现状、现有视觉软件和硬件平台,综述了机器视觉检测所涉及到的图像预处理算法、图像分割算法、图像特征提取及其选择算法、图像识别等相关理论和算法研究,并对每种主要方法的基本思想、特点和存在的局限性进行了总结,对未来可能的发展方向进行展望。结果 机器视觉表面缺陷检测系统中,图像处理和分析算法是重要内容,算法各有优缺点和其适应范围。如何提高算法的准确性、实时性和鲁棒性,一直是研究者们努力的方向。结论 机器视觉是对人类视觉的模拟,机器视觉表面检测涉及众多学科和理论,如何使检测进一步向自动化和智能化方向发展,还需要更深入的研究。  相似文献   

3.
目前机器视觉在工业产品缺陷检测中的应用越来越广泛,针对目前常用的几种非纹理图像缺陷检测算法进行了研究分析,结合纸杯表面的缺陷特征,针对模板匹配法提出了两种改进的方法,即统计平均差影法,粗放型灰度相关法。最后进行了试验分析比较,检测结果达到了预期效果。  相似文献   

4.
基于机器视觉的梨表面缺陷检测方法研究   总被引:1,自引:0,他引:1  
针对梨表面缺陷的机器视觉检测问题,在对已有研究成果的分析和研究的基础上,论文采用形态学相加的方法实现梨图像的背景去除和表面缺陷提取;提出花萼、果梗与表面缺陷的区分方法;借助Matlab软件进行仿真算法的编程,通过作者设计开发的Graphical User Interface(GUI)界面,对三个品种的梨表面进行了缺陷检测仿真实验,成功提取了其中的表面缺陷信息,实验结果表明,作者提出的方法在多种梨的缺陷提取上通用性强、准确性高.  相似文献   

5.
戴斌宇  吴静静 《传感技术学报》2019,32(10):1589-1594
为了解决定子人工检测效率、精度低的问题,设计了一套基于机器视觉的定子外观缺陷检测系统,该系统由硬件系统和软件系统两部分组成。针对定子表面图像背景复杂、内部干扰多等问题,使用最小二乘法提取圆形ROI,并提出一种基于连通域特征组合的干扰抑制算法,通过分析连通域最小外接矩形的形状和位置特征来抑制干扰;然后提出一种基于轮廓拓扑结构分析的掩模生成算法,并利用图像差分法提取缺陷进行分析判断。试验结果表明,该检测系统的稳定性和实时性良好,基本满足工业检测要求,具有很好的实用价值。  相似文献   

6.
基于机器视觉的发动机表面缺陷检测技术   总被引:1,自引:0,他引:1  
发动机表面的缺陷检测是保证其使用安全性的重要手段。本文应用机器视觉技术实现发动机内表面缺陷的自动检测,用内窥镜采集发动机装药内表面的图像,结合图像特点,通过多次实验对比,选择中值滤波方法对图像进行滤波、Canny算子检测图像边缘,应用像素灰度的相似性和不连续性将缺陷从图像背景中分割出来,在此基础上,选取面积和周长特征作为缺陷判断依据,并将以上功能进行整合,设计缺陷自动检测系统。实验结果表明该方法在发动机内表面缺陷检测方面有较好的效果。  相似文献   

7.
为实现工业现场中轴承防尘盖表面缺陷的自动检测,提出一种基于机器视觉技术的检测方法。采用蓝色同轴光源作为检测系统所用光源,克服金属反光;采用最小二乘法拟合轴承外圆,根据轴承型号比例分割出防尘盖区域,利用Otsu阈值分割和Roberts边缘提取处理图像,每2°统计值为1的点的数目,与模板轴承此数据比较,求出相差角度,由此将防尘盖字符、非字符区域分离,两部分是否存在缺陷分开判别,互不干扰。实际测试表明:检测系统采集到的轴承图像清晰,缺陷检测算法正确率在96%以上,可实现轴承防尘盖表面缺陷的自动检测。  相似文献   

8.
螺纹钢是一种广泛应用的建筑材料,在轧制过程中如果不能及时发现其尺寸和表面缺陷,就会生产出大量废品,给企业带来损失.本文设计了一种基于视觉的螺纹钢表面缺陷检测方法.先利用仿射变换对图像中歪斜的螺纹钢进行校正,然后基于霍夫变换检测纵肋边缘直线位置的方法对螺纹钢正面、侧面图像进行区分.最后针对正面、侧面图像分别进行缺陷检测,快速准确地判别表面是否存在缺陷.实验表明所设计的方法具有较好的稳定性和实用性,能有效地解决人工检测过程中效率低、误检率高等问题.  相似文献   

9.
针对钢卷尺生产过程中表面缺陷检测效率低下的问题,构建一套应用于实际工业环境下的基于机器视觉的钢卷尺表面缺陷在线检测系统。首先,设计一种实验检测平台用于获取钢卷尺表面的图像;然后,通过图像分割的数字图像处理手段准确定位钢卷尺区域轮廓;最后,采用基于灰度值的模板匹配算法、边缘检测算法及颜色聚类方法对预处理后的图像进行匹配和特征计算,实现对目标物体和区域图像的快速定位和特征提取。结果表明:该检测系统的正确率达95.83%,平均检测速度达5.025 秒/根,基本代替了人工检测,为钢卷尺表面检测提供了一种检查正确率和效率较高的新方法。  相似文献   

10.
利用传统机器视觉来检测零部件的表面缺陷已经无法满足零部件标准化检测,尤其是零部件光滑表面形成的强烈反射效应,造成零部件的部分表面亮度饱和,检测的图像信息缺失,精度严重下降.针对检测精度下降的问题,提出一种基于差影模型重构的方法,引入缺陷区域边界近似系数和细节系数来提升整个零部件缺陷检测精度.为了验证所设计的表面缺陷检测...  相似文献   

11.
目前电子产品外观表面缺陷人工检测工作量大,效率低而且漏检率高,迫切需求产品缺陷的自动化检测;实际检测中,塑料制品表面在光照条件下会出现反光,严重影响后续处理;缺陷微小且与制品颜色对比不明显,采用直接阈值无法分割;针对这一现状将机器视觉技术与虚拟仪器相结合,根据产品缺陷特征,选择合适的光照方案抑制反光,利用锐化滤波获取了缺陷部位特征清晰的图像,并对边缘模糊缺陷有效分割;识别结果表明,图像处理算法稳定,对绝大部分缺陷具有良好的检测效果。  相似文献   

12.
何永珍  王斌 《现代计算机》2011,(11):63-65,73
介绍一种基于机器视觉的液晶玻璃基板质量在线检测系统。利用分布式视觉处理技术、采用模块化的图像处理系统设计,能够实现缺陷的精确提取与对缺陷的智能分类和分级,满足LCD液晶玻璃基板质量在线检测的需要。  相似文献   

13.
《微型机与应用》2015,(19):10-13
提出了一种二维视觉与三维视觉相结合的钢轨表面缺陷检测方法。该方法通过线阵相机采集二维图像,由激光扫描仪采集钢轨深度信息,最后将这两组数据传送回主机,用Halcon和VC编写上层图像处理软件,获得钢轨表面缺陷的大小、形状、位置及深度,实现了全面检测钢轨表面缺陷。实验表明,与二维图像识别,或者与单独使用三维扫描检测相比,本系统检测效果更好。  相似文献   

14.
物体表面缺陷检测技术是工业质检领域的一项重大课题,对工业生产有着重要的意义。针对近些年基于机器视觉的表面缺陷检测技术进行梳理总结。首先,列举了几种缺陷检测在工业领域的应用场景;其次从特征提取和分类算法的角度简要阐述了传统的机器视觉方法;重点探讨了缺陷检测中常用的经典神经网络结构和缺陷检测算法的最新发展,并介绍了两种常用的缺陷检测算法优化方式;最后,分析了缺陷检测领域面临的三大挑战:实时性问题、小样本问题和小目标问题,目的是为工业表面缺陷检测的研究提供有益的参考和脉络梳理。  相似文献   

15.
《微型机与应用》2015,(24):50-52
针对钢带缺陷传统的人工检测效率低、误检率高以及危险程度大等问题,提出了一种基于机器视觉的缺陷检测和识别的研究方案。采用工业摄像头采集钢带生产线上的视频图像,通过中值滤波和小波分析相结合的方法去噪,并用Canny算子实现边缘检测,再以缺陷图像的圆形度等特征完成识别分类,从而实现对钢带缺陷的检测和统计。实验结果表明,该缺陷检测方案能够实时准确有效地识别钢带缺陷,证明了该方法的可行性。  相似文献   

16.
固体火箭发动机包覆层表面的缺陷检测是保证其使用安全性的重要手段.本文应用机器视觉技术实现发动机包覆层表面缺陷的自动检测.用工业相机采集发动机包覆层表面的图像,结合图像特点,通过多次实验分析,选择中值滤波方法进行滤波,采用图像模式匹配技术将缺陷从图像背景中分割出来,并将以上功能进行整合,设计缺陷自动检测系统.实验结果表明...  相似文献   

17.
医疗器械产品生产中的笔杆表面缺陷是不可避免的问题,基于机器视觉的自动检测方法可以克服传统人工检测效率低、漏检及误检率高等问题。在分析笔杆结构和缺陷的基础上,文章重点研究笔杆边缘直线拟合、缺陷灰度值差异、图像边缘平滑和稳定等检测方法;通过实验证明,该方法准确率可达到98.8%,每个笔杆的检测时间为8.3 s,相较于人工检测,明显提高了检测精度和速度,可以满足对笔杆实时自动缺陷检测的要求。  相似文献   

18.
在传统的轮胎表面缺陷依靠人工检测,存在劳动强度高、受人的主观影响大以及效率低下的问题。针对这一现象,研究了一种基于机器视觉的轮胎表面缺陷3D检测系统。该系统依靠机器视觉系统获取检测轮胎的表面图像,然后创建3D模型、判定缺陷类型,最终实现实时自动预警,为轮胎生产商提供一种自动化检测方案。系统集成了先进的技术、软件和工具,配套的信息管控系统可以对轮胎型号和生产数据进行采集、存储、分析,以便在生产过程中实现更高效、更可靠的质量控制,具有较高的实际应用推广价值。  相似文献   

19.
针对磁瓦生产过程中表面缺陷检测的重要性和人工检测的弊端,研究基于机器视 觉的磁瓦表面缺陷自动检测与识别方法。为解决磁瓦表面缺陷种类多、对比度低、图像中存在 磨痕纹理背景和整体亮度不均匀等难点,定义扫描线梯度,其标准差与扫描线灰度标准差构成 特征向量,提出基于两类支持向量机的图像分割方法来判别和提取缺陷;并提出一种改进的多 类支持向量机方法,对缺陷进行分类识别,解决了多类支持向量机存在不可分区域的问题,提 高了分类器的准确性和有效性。实验结果表明,该方法能准确快速地提检测磁瓦表面各区域的 各类缺陷,检出率可达到96%以上,识别率超过91%。  相似文献   

20.
提出一种基于机器视觉钢球表面缺陷识别方法, 利用计算机图像技术采集钢球表面图像信号, 采用图像比对法对图像信号进行缺陷识别分析.实践表明使用本文方法能够实现钢球表面缺陷的自动检测,具有可靠、高效的特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号