共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
石墨烯由于其优异的电学性能,在微波、毫米波、太赫兹波等领域显示出潜在的应用前景。本文设计了毫米波和亚太赫兹波频段的基于石墨烯的相位和幅值波导调制器。该石墨烯调制器可以通过调节石墨烯的表面阻抗来调控电磁波在波导中传播的振幅和相位;分析了石墨烯片的长度和位置对电磁波在波导中的透射和反射系数的影响,同时还分析了石墨烯化学势对电磁波在波导中传输和反射的影响。结果表明,通过调节石墨烯片的长度及其在矩形金属波导中的位置,可以调控调制器的反射系数、透射系数和透射相位调制范围,并满足器件级应用需求。 相似文献
3.
基于二维材料石墨烯,设计了一款宽频带可调谐超材料太赫兹吸波体。该吸波体由三层结构组成,顶层为石墨烯超材料,中间层为二氧化硅,底层为金属薄膜。仿真结果表明,当石墨烯的费米能级为0.7 eV时,该吸波体在1.11~2.61 THz频率范围内吸收率超过90%,相对吸收带宽为80.6%。当石墨烯的费米能级从0 eV增大到0.7 eV时,该吸波体器件的峰值吸收率可以从20.32%增大到98.56%。此外,该吸波体器件还具有极化不敏感和广角吸收的特性。因此,它在太赫兹波段的热成像、热探测、隐身技术等领域具有潜在的应用价值。 相似文献
4.
太赫兹波具有瞬态性、宽带性、穿透性和低能性等一系列独特性质,使其在材料研究、信息传递、环境检测、国防安全、医疗服务等方面展现了非常广阔的应用前景。作为该领域应用的关键,太赫兹探测器得到科研人员极大的重视。一般来讲,探测器的性能很大程度上依赖于基质材料的特性。石墨烯具有2个非常重要的优势,一是石墨烯具有线性能带结构,使得能够吸收太赫兹波;二是石墨烯具有超高载流子迁移率,能够进行超快探测。因此,石墨烯基有望成为太赫兹频段新一代高性能探测器的基质材料。详细综述了近几年关于石墨烯基太赫兹探测器的发展状况。 相似文献
5.
提出一种基于石墨烯的双波段太赫兹超材料吸收体,它由金属-电介质-石墨烯3层超材料结构单元在水平方向上进行周期性拓展而成。仿真结果显示,其在太赫兹波段6.62 THz和 9.36 THz分别产生99.9%和98.9%的高吸收率;通过改变石墨烯的费米能级,可以灵活地控制吸收体的谐振频率和吸收强度,而吸收体的吸收强度也可以利用石墨烯的弛豫时间进行单独控制。另外,研究了吸收体中间介质层厚度和介质损耗对吸收率的影响,这为吸收体初始加工工艺参数的确定提供了依据。研究结果表明,提出的基于石墨烯的太赫兹超材料吸收体结构简单,易于加工,可通过偏置电压或者化学掺杂,简单地实现吸收体的可调谐性,为双波段高吸收率太赫兹超材料吸收体的设计提供了重要参考。 相似文献
6.
为了满足通信设备大容量数据传输与设备小型化的需求,提出了一种包括矩形贴片、介质基板和开槽接地板的多模式可重构太赫兹微带天线.基于石墨烯材料在太赫兹波段的电可控特性,将3组石墨烯作为调控开关分布在开槽处,通过控制石墨烯的偏置电压实现开关通断.该天线具有6种频率可重构模式,谐振频率分布在2.652~4.565 THz范围内... 相似文献
7.
该文提出了一种基于石墨烯的宽带可调谐吸波器,该器件是由网格型石墨烯结构、介质层及金属地板组成。采用CST软件对器件的性能进行了仿真分析,仿真结果显示,当石墨烯费米能级时,在2.97~3.74 THz内,器件对电磁波吸收率达90%。另一方面,器件的工作频率可通过改变石墨烯的费米能级进行动态调控。当石墨烯的费米能级从0.3 eV变到0.8 eV时,器件的工作频率在2.60~4.55 THz内调谐,相对调谐带宽为56%,且在整个调谐频率范围内,器件对电磁波的吸收率始终高于90%。此外,器件的工作性能对入射电磁波的偏振方向和入射角不敏感,因此,该器件在太赫兹成像、太赫兹检测和隐身技术等领域有潜在的应用价值。 相似文献
8.
超材料吸波体通常是由一些在介质基底表面上周期分布的亚波长开口环谐振器(SRRs)组成,它们的吸收率在很大程度上取决于顶层SRRs的结构细节及介质的材料性质。利用时域有限积分法(FITD)对太赫兹波的超材料吸波体进行传输特性研究,分析了PI介质厚度、单元尺寸、开口环谐振器宽度、顶层silicon的电导率和PI介质的介电常数对太赫兹波超材料吸波体吸收峰位置和吸收率大小的影响。此超材料吸波体的特性研究对太赫兹波调制器、滤波器、吸收器及偏振器等器件设计和制备具有一定的指导意义。 相似文献
9.
太赫兹超材料吸波器具有吸收强、厚度薄、质量轻等优点,已被广泛应用于隐身材料、频率选择表面、太赫兹成像、通信传感等方面。但是,基于金属结构的传统太赫兹超材料吸波器一旦完成加工后,它的吸收性能是固定不变的。为解决这一问题,研究人员通过引入活性超材料设计了可调谐太赫兹超材料吸波器。结合可调谐太赫兹超材料吸波器的国内外研究现状,分类阐述了几类典型的可调谐太赫兹超材料吸波器,重点对单频带、多频带、宽频带以及可切换双功能太赫兹超材料吸波器的相关研究工作进行了梳理与总结,并对其未来发展趋势进行了分析。 相似文献
10.
11.
12.
13.
电极材料的孔径结构、尺寸、类型直接影响电极材料的电化学性能。文章利用水热反应与硝酸蒸汽处理两步法制备了三维多孔石墨烯材料,并通过控制硝酸蒸汽处理时间,研究其对电极材料电化学特性的影响。通过扫描电镜、透射电镜、拉曼光谱、X射线衍射等多种测试方法对得到的三维多孔石墨烯进行表征,并利用三电极测试方法,通过循环伏安、恒流充放电和电化学阻抗等电化学测试方法研究其电化学性能。结果表明,所制备的三维多孔石墨烯具有微孔与纳米孔相结合的三维结构,两者的协同作用使得三维多孔石墨烯表现出优异的电化学性能,在1A/g的电流密度下,比电容最高可达191.5F/g。 相似文献
14.
石墨烯具有缺陷密度低、易大面积转移,载流子迁移率高等优异特性,但石墨烯具有的零带隙能带结构导致光生载流子寿命不高,制约了其在高灵敏光电探测器的应用。本工作中利用铁电材料CuInP2S6(CIPS)做顶栅来调控石墨烯的光电特性,探索了提升石墨烯太赫兹探测器灵敏度的可能性,研究了基于铁电调控下的石墨烯光热电效应和等离子体波自混频效应的探测机理,得到了高性能的石墨烯太赫兹探测器。在40 mV的偏置电压和2.12 V的栅压下,该器件在0.12 THz波段辐射下达到了0.5 A/W的响应率,响应时间为1.67 μs,噪声等效功率为0.81 nW/Hz1/2。在0.29 THz波段辐射下仍达到了0.12 A/W的响应率,且噪声等效功率为1.78 nW/Hz1/2。该工作展示了二维铁电异质结构在太赫兹波段中的巨大应用前景。 相似文献
15.
研究了石墨烯纳米带横向p-i-n结构探测器对太赫兹波的响应特性,基于载流子输运方程和泊松方程,建立了考虑迁移、扩散、生成、复合等载流子运动的太赫兹探测器数学模型。根据该模型,对石墨烯纳米带横向p-i-n结构的太赫兹波响应进行了仿真,获得了反向栅压诱导生成的p-i-n二极管的能带图;进而探讨了纳米带宽度、i区长度及偏置电压对响应电流的影响,分析表明石墨烯纳米带带隙随宽度增大而减小,响应频率减小;i区长度与载流子寿命匹配时响应电流达到峰值;光电流随偏置电压的增大而增大,并趋于饱和。 相似文献
16.
为克服金属材料在太赫兹频段的工艺不足,利用石墨烯在该频段的特性,设计了一款工作于1.0 THz的石墨烯贴片天线。根据随机相位近似(RPA)的石墨烯表面电导率模型,研究了面电导率与频率(太赫兹波段)以及化学势的变化关系,确定了石墨烯材料的物理参数。该天线结构由石墨烯贴片,聚酰亚胺衬底和地板组成。利用HFSS软件优化,其尺寸仅为220 μm×140 μm×9 μm。石墨烯贴片天线工作频段为0.98~1.02 THz,-10 dB相对阻抗带宽为4.0 %,最大辐射方向上的增益达7.32 dB。此外,该天线具有尺寸小,轻便,机械性能稳定,结构简单且易集成的特点。 相似文献
17.
研究了锗基单层石墨烯结构宽带光控太赫兹调制器。利用实验室搭建的太赫兹时域光谱系统,实验证明了在1 550 nm飞秒光泵浦下,该太赫兹调制器工作带宽为0.2~1.5 THz。当泵浦光功率从0增加到250 mW时,该太赫兹波调制器的平均透过率从40%下降到22%,平均吸收系数从19 cm-1增加到44 cm-1,在0.2~0.7 THz,调制深度均高于50%,最大调制深度为62%(0.38 THz)。实验结果表明,相比于纯锗基太赫兹调制器,单层石墨烯的引入能增强对太赫兹波的调制效果。 相似文献