首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability of antiferroelectricity in NaNbO3 ceramics was found to evolve with co-doping x mol% CaZrO3 and 6 mol% BaZrO3, from a dominant ferroelectric (FE) orthorhombic Q phase (x = 0) to a gradually stabilized antiferroelectric (AFE) orthorhombic P phase owing to different ionic radii of Ba and Ca ions. Although a complete AFE P phase appears at x = 0.5, the field induced AFE-FE phase transformation is irreversible at first, and then becomes partially reversible at x = 1 and finally completely reversible at x = 3. The above-mentioned change process proves to be associated with the enhancing stability of antiferroelectricity with x, as evidenced by means of dielectric, polarization and strain properties as well as in/ex-situ synchrotron x-ray diffraction and Raman spectra. A composition-field phase diagram for the NN-based lead-free AFE ceramic was constructed on basis of the phase structural change, which would provide a clear understanding of how ion doping influences its antiferroelectricity.  相似文献   

2.
The development of capacitors with high reliability and good comprehensive performances is of great significance for practical applications. In this work, lead-free relaxor ferroelectric (FE) ceramics of (1-x)(0.5(Bi0.5Na0.5)TiO3-0.5SrTiO3)-xBi(Mg2/3Nb1/3)O3 ((1-x)(BNT-ST)-xBMN) were prepared by a conventional solid-state reaction method. The introduction of BMN was found to enhance local structure disorder, leading to the significantly reduced size of FE nanodomains, which is responsible for the slim polarization-electric field hysteresis loops. A giant energy-storage density of 6.62 J/cm3 and a high efficiency of 82 % can be achieved simultaneously under a moderate electric field of 34 kV/mm at x = 0.08. It also exhibits high discharge density ~ 2.74 J/cm3, large power density ~ 248 MW/cm3 and ultrafast discharge rate ~ 28 ns at 20 kV/mm in addition to excellent temperature (10–130 °C) and frequency (1–100 Hz) stabilities. These results demonstrate that the (1-x)(BNT-ST)-xBMN ceramic system is a promising lead-free candidate for advanced pulsed power capacitor applications.  相似文献   

3.
The pyroelectric materials have immense applications in the uncooled infrared thermal detectors. However, owing to increasing environmental concerns due to Pb element, it is required to explore novel, high-performance, environmental-friendly pyroelectric materials. This is the first study to report about the pyroelectric properties of lead-free NaNbO3 ceramics, which displayed a high pyroelectric coefficient of 1.85 × 10?8 C cm-2 K?1 and figures of merit as Fi = 0.67 × 10?10 m V?1, Fv = 3.33 × 10?2 m2 C?1, and Fd = 5.32 × 10-5 Pa?1/2 at room temperature. Also, highly temperature-stable pyroelectric characteristics were also observed in NaNbO3 ceramics due to the high depolarization temperature of 280 ℃. The high pyroelectric properties and temperature stability were a result of the electric field induced irreversible phase transition from antiferroelectric to ferroelectric. Hence, we can conclude that lead-free NaNbO3 ceramics are a novel and promising candidate for pyroelectric detectors in a wide temperature range, especially for large area detectors and pyroelectric point detector.  相似文献   

4.
Relaxor ferroelectric (FE) materials have received increasing attention owing to their great potentials for energy-storage applications, especially for the ones with high energy-storage density, efficiency and thermal stability simultaneously. A novel lead-free [(Na0.5K0.5)0.97-xLi0.03](Nb0.94-xSb0.06)O3-xBi(Zn1/2Zr1/2)O3 (NKLNS-xBZZ) ceramics was developed by a solid-state reaction method. The addition of BZZ has induced obvious dielectric relaxation behavior, as well as improved thermal stability of dielectric response. Furthermore, 0.4 wt.% La2O3 was added into the NKLNS-0.06BZZ ceramic, leading to an increased breakdown strength as a result of the reduction of grain size, improvement of bulk resistivity and decrease of dielectric loss. A large recoverable energy-storage density (∼4.85 J/cm3) and a high efficiency (∼88.2 %) as well as an excellent thermal stability (±12 %, 25–140 °C) were simultaneously obtained, together with a fast discharge rate (t0.9∼112 ns). These results suggest that La2O3 doped NKLNS-0.06BZZ ceramic could become an attractive dielectric material for temperature-stable energy-storage capacitors.  相似文献   

5.
In this work, the (1-x)(0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3)-xSrTiO3 (NKBT-xST) incipient piezoelectric ceramics with x = 0–0.07 (0ST-7ST) were prepared by the solid-state reaction method and their structural transformation and electromechanical properties were investigated as a function of ST content. As the ST content increases, the long-range ferroelectric order is disrupted, and the ferroelectric-relaxor phase transition temperature (TFR) shifts to around room temperature for NKBT-5ST ceramics, accompanied by a relatively high electrostrain of 0.3% at 6 kV/mm. The large strain response associated with the vanished ferroelectric properties around TFR can be attributed to the reversible relaxor-ferroelectric phase transition. The electric-field-temperature (E-T) phase diagrams were established, and the transition between the two field-induced long-range ferroelectric states were found to take place via a two-step switching process through an intermediate relaxor state. The threshold electric field to trigger the conversion between ferroelectric state and relaxor state depends strongly on the dynamics of polarization relaxation, which is influenced by temperature and composition.  相似文献   

6.
In this study, we present an effective strategy to enhance the energy storage properties of Ba0.4Sr0.6TiO3 (BST) lead-free ceramics by the addition of Bi2O3-B2O3-SiO2 (BBS) glass, which were prepared by the conventional solid state sintering method. The phase structure, microstructure and energy storage properties were investigated in detail. It can be found that the Ba0.4Sr0.6TiO3-x wt%(Bi2O3-B2O3-SiO2) (BST- x wt%BBS, 0  x  12) ceramics possess large maximum polarization (Pmax), low remanent polarization (Pr) and slim polarization electric field (P-E) hysteresis loops. The breakdown strength (BDS), recoverable energy storage density (Wrec) and energy storage efficiency (η) are enhanced obviously with the addition of BBS glass. The BST-9 wt%BBS ceramic is found to exhibit excellent energy storage properties with a Wrec of 1.98 J/cm3 and a η of 90.57% at 279 kV/cm. These results indicate that the BST-x wt%BBS ceramics might be good candidates for high energy storage applications.  相似文献   

7.
A new ternary lead-free (0.67-x)BiFeO3-0.33BaTiO3-xLa(Mg1/2Ti1/2)O3 ferroelectric ceramic exhibited an obvious evolution of dielectric relaxation behavior. A significantly enhanced energy-storage property was observed at room temperature, showing a good energy-storage density of 1.66 J/cm3 at 13 kV/mm and a relatively high energy-storage efficiency of 82% at x = 0.06. This was basically ascribed to the formation of a slim polarization-electric field hysteresis loop, in which a high saturated polarization Pmax and a rather small remnant polarization Pr were simultaneously obtained. Particularly, its energy storage properties were found to depend weakly on frequency (0.2 Hz–100 Hz), and also to exhibit a good stability against temperature (25 °C–180 °C). The achievement of these characteristics was attributed to both a rapid response of the electric field induced reversible ergodic relaxor to long-range ferroelectric phase transition and a typical diffuse phase transformation process in the dielectric maxima.  相似文献   

8.
《Ceramics International》2017,43(9):7237-7242
Pairing of large strain response and high d33 with high Tc in (K0.5Na0.5)NbO3-based materials is of high significance in practical applications for piezoelectric actuators. Here, we report remarkable enhancement in the electromechanical properties for (1-x)(K0.52Na0.48) (Nb0.95Sb0.05)O3-xCaZrO3 (KNNS-xCZ) lead-free ceramics through the construction of a rhombohedral (R)-tetragonal (T) phase boundary. We investigated the correlation between the composition-driven phase boundary and resulting ferroelectric, piezoelectric, and strain properties in KNNS-xCZ ceramics. The KNNS-xCZ ceramics with x=0.02 exhibited a large strain response of 0.23% while keeping a relatively large d33 of 237pC/N, which was mainly ascribed to the coexistence of R and T phases confirmed by the XRD and dielectric results. It was found that pairing of large strain response and high d33 in KNN-based materials was achieved. As a consequence, we believe that this study opens the possibility to achieve high-performance lead-free electromechanical compounds for piezoelectric actuators applications.  相似文献   

9.
《Ceramics International》2019,45(16):19822-19828
A series of (1-x)(Bi0.5Na0.5)0.94Ba0.06TiO3-xBaSnO3 (BNBT-100xBSN, x = 0–20) lead-free ceramics were synthesized using a conventional high-temperature solid-state reaction route. The effects of BaSnO3 on the dielectric, ferroelectric and energy-storage performance of BNBT-BSN were systematically investigated. Temperature dependent permittivity curves indicated the obviously enhanced relaxor ferroelectric property. The introduction of BaSnO3 reduced the temperature corresponding to the first dielectric anomaly, which facilitated the dielectric temperature stability. △ε'/ε'150°C varied no more than 15% within the temperature range of up to 338 °C (45–383 °C) for BNBT-15BSN. A slimed P-E loop was obtained with the remnant polarization of 0.4 μC/cm2 for BNBT-15BSN. Moreover, the breakdown field intensity of BNBT-BSN increased effectively from 80 kV/cm to 115 kV/cm. Therefore, an optimum energy-storage performance was obtained in BNBT-15BSN with the energy-storage density of 1.2 J/cm3 whose energy-storage efficiency reached 86.7%. Furthermore, the possible contributions of defect and vacancy to relaxation and conductance mechanism were discussed by studying the impedance and electric modulus. The results above indicated the BNBT-100xBSN be a promising lead-free candidate for energy-storage capacitors.  相似文献   

10.
11.
SnO2 doped Sr0.6(Na0.5Bi0.5)0.4TiO3 (NBT-ST) ceramics were prepared by a conventional solid-state reaction method. Their phase structures, microstructures and electrical properties were characterized in details. It is found that SnO2 doping could increase the lattice parameters, density and average grain size. A suitable amount of SnO2 can improve dielectric properties, and affect the relaxor behavior of the NBT-ST matrix, thereby it can effectively reduce the energy loss and optimize the energy storage performance. Furthermore, the energy storage properties are improved with SnO2 doping. Especially, the 1 at. % SnO2 doped NBT-ST achieves a high recoverable energy density of 2.35 J/cm3, which is mainly attributed to large maximum polarization of 43.2 μC/cm2, small remnant polarization of 5.83 μC/cm2 and high breakdown strength of 180 kV/cm. Also, relatively good temperature stability for dielectric performance and excellent fatigue resistance are observed in this composition. These properties are attractive for lead-free energy storage applications.  相似文献   

12.
The temperature and electric field induced phase instability were found to produce distinctly different temperature-dependences of small- and high-field strains in the proximity of orthorhombic (O) to tetragonal (T) polymorphic phase transition of (Na,K)(Nb,Sb)O3-LiTaO3 lead-free ceramics. As evidenced by means of in-situ and ex-situ synchrotron x-ray diffraction and quantitative analyses, both O-T phase coexistence and intermediate monoclinic (Mc) phase were believed to promote intrinsic piezoelectric strains. Further increase of high-field strains with temperature was ascribed to enhanced contributions from field-induced reversible Mc-T phase transition, plus little extrinsic contribution from non-180° domain switching which was unexpectedly hindered near the phase boundary.  相似文献   

13.
《Ceramics International》2019,45(10):13347-13353
(1-x)(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3-xBaTiO3 (labeled as (1-x)KNLNTS- xBT, x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10) lead-free ceramics were prepared by a solid-state sintering method. As the BT content increased, the phase of ceramics changed from orthorhombic (0.00 ≤ x ≤ 0.02) to orthorhombic-tetragonal (0.02 < x < 0.06) structure, and finally turned into tetragonal (0.06 ≤ x ≤ 0.10) structure. The Curie-Weiss law and modified Curie-Weiss law were applied to analyzing dielectric properties. With the increase of BT content, the relaxation degree increased, which indicated that the ceramics shown a excellent relaxation behavior. For 0.9KNLNTS- 0.1BT ceramics, the dispersion coefficient γ reached the maximum of 1.73, which is hugely attractive for lead-free relaxor ferroelectrics. From its variation of impedance spectroscopy with temperature, it was found that the relaxation and conduction behavior were associated with the thermal activation, and the oxygen vacancies were the potential ionic carriers. Moreover, through Arrhenius fitting, the activation energy of 0.9KNLNTS- 0.1BT ceramic was 0.82(6) eV, indicating that the oxygen vacancy concentration for the ceramics was high.  相似文献   

14.
The issue of how to achieve an electrocaloric effect (ECE) and pyroelectric effect in a material simultaneously remains to be a challenge for developing practical solid-state cooling devices and RF-detectors. Here, we structure a polymorphic phase transition (PPT) region by doping modification in KNN-based ceramics, which are developed to achieve the ECE. The direct measured ECE and pyroelectric properties are investigated in lead-free (1-x)K0.5Na0.5NbO3-xBi0.5Na0.5ZrO3 (KNN-xBNZ) ceramics. The adiabatic temperature change (∆T) of 0.22 K at 100°C, 0.14 K at 70°C and 0.16 K at 30°C can be obtained under an electric field of 35 kV cm–1 for x = 0.03, 0.04 and 0.05, respectively. In addition, the temperature dependence of pyroelectric coefficient (p) is established for all compositions via the Byer-Roundy method. A large p of 454.46 × 10–4 C m–2 K–1 is detected at Curie temperature (TC) in the ceramics with x = 0.03. Achieving electrocaloric effect and pyroelectric performance simultaneously may shed light and provide a feasible design scheme for developing practically useful electrocaloric and pyroelectric materials.  相似文献   

15.
In this work, fine-grained (0.95-x)(Bi0.5Na0.5)TiO3-0.05BaTiO3-xBi(Zn2/3Nb1/3)O3 (abbreviated as BNT-BT-xBZN, x = 0~0.20) lead-free ceramics are successfully prepared, showing a high energy storage performance. The addition of BZN results in decreased grain size, enhanced breakdown strength and stronger relaxor behavior with polar nanoregions. Slimmer P-E loops are thereby achieved, leading to the improvement of energy density and efficiency. As a result, a high WD of ~2.83 J/cm3 is achieved under a relatively low electric field of 18 kV/mm in the x = 0.125 ceramic with submicron-sized grains (~0.4 μm). The WD value is larger than that of x = 0 ceramic by ~800%. Furthermore, the x = 0.125 ceramic possesses excellent frequency stability and strong fatigue endurance. The BNT-BT-xBZN lead-free ceramics show promising potential for application in high energy density ceramic capacitors.  相似文献   

16.
Antiferroelectric (AFE) ceramics based on Pb(Zr,Sn,Ti)O3 (PZST) have shown great potential for applications in pulsed power capacitors because of their fast charge-discharge rates (on the order of nanoseconds). However, to date, it has been proven very difficult to simultaneously obtain large recoverable energy densities Wre and high energy efficiencies η in one type of ceramic, which limits the range of applications of these materials. Addressing this problem requires the development of ceramic materials that simultaneously offer a large ferroelectric-antiferroelectric (FE-AFE) phase-switching electric field EA, high electric breakdown strength Eb, and narrow polarization-electric field (P-E) hysteresis loops. In this work, via doping of La3+ into (Pb1-1.5xLax)(Zr0.5Sn0.43Ti0.07)O3 AFE ceramics, large EA and Eb due to respectively enhanced AFE phase stability and reduced electric conductivity, and slimmer hysteresis loops resulting from the appearance of the relaxor AFE state, are successfully obtained, and thus leading to great improvement of the Wre and η. The most superior energy storage properties are obtained in the 3?mol% La3+-doped (Pb1-1.5xLax)(Zr0.5Sn0.43Ti0.07)O3 AFE ceramic, which simultaneously exhibits at room temperature a large Wre of 4.2?J/cm3 and a high η of 78%, being respectively 2.9 and 1.56 times those of (Pb1-1.5xLax)(Zr0.5Sn0.43Ti0.07)O3 AFE ceramics with x?=?0 (Wre?=?1.45?J/cm3, η?=?50%) and also being superior to many previously published results. Besides, both Wre and η change very little in the temperature range of 25–125?°C. The large Wre, high η, and their good temperature stability make the Pb0.955La0.03(Zr0.5Sn0.43Ti0.07)O3 AFE ceramic attractive for preparing high pulsed power capacitors useable in various conditions.  相似文献   

17.
Li/Ta/Sb co-doped lead-free (K0.4425Na0.52Li0.0375)(Nb0.93−xTaxSb0.07)O3 (abbreviated KNLNSTx) piezoelectric ceramics, with Ta-doping ratio of x ranging from 0.0275 to 0.0675, were synthesized using the conventional solid-state reaction method at the sintering temperature of 1130 °C. The effects of Ta content on the microstructure, dielectric properties, and phase transition behavior of the prepared ceramics were systematically investigated. The X-ray diffraction results show that all KNLNSTx ceramics formed a secondary phase, which is assigned to the tetragonal tungsten-bronze type (TTB) structure phase, and showed a phase transition from an orthorhombic symmetry to a tetragonal symmetry across a composition region of 0.0375<x<0.0475. The grain shape and size that correspond to the phase structure transformations can be clearly observed in the scanning electron microscopy images. As x increased to 0.0475, the KNLNST0.0475 ceramics changed from orthorhombic to tetragonal structure and showed excellent piezoelectric properties of d33=313 pC/N, kp=47%, and εr=1825. By contrast, samples of x=0.0375 with orthorhombic symmetry exhibited poor piezoelectric properties, with d33=200 pC/N and εr=1015. These results indicate that phase structure is vital in the piezoelectric properties of KNN lead-free ceramics.  相似文献   

18.
Ceramic-based dielectric capacitor are highly suitable for pulsed power applications due to their high power density and excellent reliability. However, the ultrahigh applied electric field limit their applications in integrated electronic devices. In this work, (1−x){0.96(Bi0.5Na0.5)(Ti0.995Mn0.005)O3-0.04BiAlO3}-xNaNbO3 (BNT-BA-xNN, x = 0, 0.04, 0.08, 0.12, and 0.16) ternary ceramics were designed to achieve excellent energy storage properties. It was found that the introduction of NaNbO3 (NN) effectively increase the difference (ΔP) between Pmax and Pr, resulting in an obvious enhancement of the energy storage properties. High recoverable energy storage density, responsivity, and power density, that is, Wrec = 2.01 J/cm3, ξ Wrec/E = 130.69 J/(kV⋅m2), and PD = 25.59 MW/cm3, accompanied with superior temperature stability were realized at x = 0.14 composition. In addition, the thermal stable dielectric properties of the sample can be prominently improved with increasing NN content. The temperature coefficient of capacitance (TCC) of x = 0.16 composition is lower than 15% over the temperature range from 49°C to 340°C, with a high dielectric permittivity of 1647 and a low dielectric loss (0.0107) at 150°C. All these features show that the BNT-BA-xNN ceramics are promising materials for energy storage application.  相似文献   

19.
Good thermal stability in lead-free BaTiO3 ceramics is important for their applications above room temperature. In this study, thermal stable piezoelectricity in lead-free (Ba,Ca)(Ti,Zr)O3 ceramics was enhanced by tailoring their phase transition behaviors. Comparison between (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.65Ca0.35)TiO3 and (1-y)Ba(Ti0.8Zr0.2)O3-y(Ba0.95Ca0.05)TiO3 revealed that latter system at y?=?0.80 had much better thermal stable piezoelectric coefficient than the former at x?=?0.45. Both systems crystalized in tetragonal to orthorhombic phase boundary at room temperature. The phase transition temperature and degree of diffusion were adjusted by Ca and Zr ions contents and demonstrated great influence on temperature dependent dielectric permittivity, hysteresis loops, and in-situ domain structures. The improved thermal stability of (1-y)Ba(Ti0.8Zr0.2)O3-y(Ba0.95Ca0.05)TiO3 prepared at y?=?0.80 was linked to its higher paraelectric to ferroelectric phase transition temperature (Tm?=?115.7?°C) and less degree of diffusion (degree of diffusion constant γ?=?1.35). By comparison, (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.65Ca0.35)TiO3 prepared at x?=?0.45 revealed Tm?=?81.3?°C and γ?=?1.65. Overall, these findings look promising for future stimulation of phase transition behaviors and design of piezoelectric materials with good thermal stabilities.  相似文献   

20.
In this study, we synthesized BaZnSi3O8-based compounds with monoclinic structures (P21/a) using a solid-state method. The crystal structure, phase composition, and microwave dielectric properties of BaZnSi3O8-based ceramics were systematically investigated systematically. X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) images proved that the maximum solubility of BaZn1-xMgxSi3O8 ranged between 0.3 and 0.4. Rietveld refinement and Phillips–Van Vechten–Levine complex chemical bond theory were used to illustrate the relationship between the microwave dielectric performance and lattice parameters. To further improve the properties, we substituted Ba2+ with Sr2+ in BaZn0.8Mg0.2Si3O8. Ba1-ySryZn0.8Mg0.2Si3O8 remained in a single-phase as y increased from 0 to 1.0. We achieved thermal stability of the resonance frequency of the BaZnSi3O8-based ceramics by adjusting TiO2 to form composite ceramics. After sintering at 1020°C for 5 h, excellent microwave dielectric properties with εr = 7.44, Q×f = 57,400 GHz, and τf = − 0.2 ppm/°C were realized in the SrZn0.8Mg0.2Si3O8+8 wt %TiO2 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号