首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reliable brazing of the ZTA ceramic joints was successfully obtained using Ni-Ti filler metal. The microstructure and mechanical properties of the joints brazed at different temperatures were investigated. During the process of brazing, both Al2O3 and ZrO2 in the ZTA reacted with the Ni-Ti filler, resulting in the formation of the AlNi2Ti + Ni2Ti4O reaction layer adjacent to the ZTA substrate when brazed at 1350 °C for 30 min. NiTi and Ni3Ti compounds precipitated at the center of brazing seam. When the brazing temperature increased from 1320 °C to 1380 °C, the thickness of AlNi2Ti + Ni2Ti4O layer increased gradually. As the brazing temperature varied from 1400 °C to 1450 °C, TiO was formed adjacent to the ZTA substrate, along with the reduction of Ni2Ti4O. AlNi2Ti distributed at the interface and center of brazing seam. The maximum shear strength of 152 MPa was obtained when brazed at 1420 °C for 30 min.  相似文献   

2.
《Ceramics International》2016,42(11):12815-12824
Reliable brazing of a zirconia ceramic and pure niobium was achieved by using two Ag-based active filler metals, Ag-Cu-Ti and Ag-Cu-Ti+Mo. The effects of brazing temperature, holding time, and Mo content on the interfacial microstructure and mechanical properties of ZrO2/Nb joints were investigated. Double reaction layers of TiO and Ti3Cu3O formed adjacent to the ZrO2 ceramic, whereas TiCu4+Ti2Cu3+TiCu compounds appeared in the brazing interlayer. With increasing brazing temperature and time, the thickness of the Ti3Cu3O layer increased with consumption of the TiO layer, and the total thickness of the reaction layers increased slightly. Meanwhile, the blocky Ti-Cu compounds in the brazing interlayer tended to accumulate and grow. This microstructural evolution and its formation mechanism are discussed. The maximum shear strength was 157 MPa when the joints were brazed with Ag-Cu-Ti at 900 °C for 10 min. The microstructure and bonding properties of the brazed joints were significantly improved when Mo particles were added into the Ag-Cu-Ti. The shear strength reached 310 MPa for joints brazed with 8.0 wt% Mo additive, which was 97% higher than that of joints brazed with single Ag-Cu-Ti filler metal.  相似文献   

3.
《Ceramics International》2017,43(9):6786-6790
As-received and pre-coated SiC whiskers (SiCw)/SiC ceramics were prepared by phenolic resin molding and reaction sintering at 1650 °C. The influence of SiCw on the mechanical behaviors and morphology of the toughened reaction-bonded silicon carbide (RBSC) ceramics was evaluated. The fracture toughness of the composites reinforced with pre-coated SiCw reached a peak value of 5.6 MPa m1/2 at 15 wt% whiskers, which is higher than that of the RBSC with as-received SiCw (fracture toughness of 3.4 MPa m1/2). The surface of the whiskers was pre-coated with phenolic resin, which could form a SiC coating in situ after carbonization and reactive infiltration sintering. The coating not only protected the SiC whiskers from degradation but also provided moderate interfacial bonding, which is beneficial for whisker pull-out, whisker bridging and crack deflection.  相似文献   

4.
Reliable contact-reactive brazed joints of TC4 alloy and Ti3SiC2 ceramic were obtained using a Cu interlayer. The interfacial microstructure of a TC4/Ti3SiC2 joint brazed at 920?°C for 10?min was TC4/Ti2Cu +?α-Ti +?β-Ti/Ti2Cu +?AlCu2Ti +?Ti5Si3/Ti5Si3 +?Ti5Si4/Ti3SiC2. The interfacial microstructure and mechanical properties of TC4/Ti3SiC2 joints brazed at different temperatures were investigated. With increasing temperature, the shear strength of the brazed joints first increased and then decreased. The maximum shear strength was 132?±?8?MPa, and the corresponding fracture occurred along the Ti–Si reaction layer and the Ti3SiC2 substrate adjacent to the Ti–Si reaction layer. The microhardness test also demonstrated that the Ti–Si reaction layer possessed the highest microhardness, 812?±?22 HV. The Ti-Si reaction layer was the weakest part of the brazed joints. To eliminate the Ti-Si reaction layer and improve the mechanical properties of TC4/Ti3SiC2 brazed joints, a 40-μm Ni layer was plated on the surface of the Ti3SiC2 ceramic before brazing. The results showed that the Ti–Si reaction layer that formed adjacent to the Ti3SiC2 ceramic was thin and intermittent. Moreover, the interface between the Ti3SiC2 ceramic and the TC4 alloy became jagged. The shear strength of the TC4/nickel-plated Ti3SiC2 brazed joints improved to 148?±?8?MPa; the corresponding fracture occurred mainly in the Ti3SiC2 ceramic and only a small portion of the fracture occurred in the brazing seam.  相似文献   

5.
《Ceramics International》2017,43(13):9738-9745
Porous Si3N4 ceramic was firstly joined to TiAl alloy using an AgCu filler alloy. The effects of brazing temperature and holding time on the interfacial microstructure and mechanical properties of porous-Si3N4/AgCu/TiAl joints were studied. The typical interfacial microstructure of joints brazed at 880 °C for 15 min was TiAl/AlCu2Ti/Ag-Cu eutectic/penetration layer (Ti5Si3+TiN, Si3N4, Ag (s, s), Cu (s, s))/porous-Si3N4. The penetration layer was formed firstly in the brazing process. With increasing brazing temperature and time, the thickness of the penetration layer increased. A large amount of element Ti was consumed in the penetration layer which suppressed the formation and growth of other intermetallic compounds. The penetration layer led the fracture to propagate in the porous Si3N4 ceramic substrate. The maximum shear strength was ~13.56 MPa.  相似文献   

6.
Joining of Y3Al5O12 garnet single crystal (YAG) was achieved by using a bismuth-borate based glass filler. The thermal properties of glass filler were experimentally determined and the wettability of molten glass on YAG was investigated. The YAG reacted with glass to form ZnAl2O4 particles and Y2O3 nanowires successively as joining temperature is above 625℃. ZnAl2O4 preferentially nucleated and grew on Y2O3 nanowires. The cooperative growth of the two phases accelerated YAG decomposition, which in turn led to cluster growth of Y2O3 nanowires and aggregation of ZnAl2O4 particles at elevated temperature. The microstructure evolution and reaction mechanism were studied. The highest shear strength of 29.6 ± 5.2 MPa was obtained for the joint brazed at 650℃. The fracture morphology demonstrated that the dispersive strengthening of ZnAl2O4 and stress relief by Y2O3 nanowire network contributed to the superior mechanical performance.  相似文献   

7.
Reliable brazing of carbon fiber reinforced SiC (Cf/SiC) composite to Nb-1Zr alloy was achieved by adopting a novel Ti45Co45Nb10 (at.%) filler alloy. The effects of brazing temperature (1270–1320 °C) and holding time (5–30 min) on the microstructure and mechanical properties of the joints were investigated. The results show that a continuous reaction layer (Ti,Nb)C was formed at the Cf/SiC/braze interface. A TiCo and Nb(s,s) eutectic structure was observed in the brazing seam, in which some CoNb4Si phases were distributed. By increasing the brazing temperature or extending the holding time, the reaction layer became thicker and the amount of the CoNb4Si increased. The optimized average shear strength of 242 MPa was obtained when the joints were brazed at 1280 °C for 10 min. The high temperature shear strength of the joints reached 202 MPa and 135 MPa at 800 °C and 1000 °C, respectively.  相似文献   

8.
Properties such as high hardness, low density, and high elastic modulus have made SiC ceramics proper choices for a variety of industrial applications. However, disadvantages such as low sinterability, and low fracture toughness have limited the fabrication of these ceramics. Past researches show that the use of Al2O3-Y2O3 additives play an important role in improving the sinterability and the properties of the composites. The use of oxide, carbide, nitride and boride additives results in improved sinterability, physical and mechanical properties. The investigations show that the microstructure, porosities, amount of additives, reaction of additives with the matrix, grain size and, finally, the sintering temperature are the most important factors affecting the properties of SiC ceramics. In this paper, the effect of using various additives, the sintering temperature and the annealing heat treatment on sinterability, microstructure and properties of the SiC matrix composites fabricated by pressureless sintering method have been investigated.  相似文献   

9.
Al2O3 particle-reinforced Cr2AlC in situ composites were successfully fabricated from powder mixtures of Cr3C2, Cr, Al, and Cr2O3 by a reactive hot-pressing method at 1400 °C. A possible synthesis mechanism was proposed to explain the formation of the composites in which Al2O3 was formed by the aluminothermic reaction between Al and Cr2O3, meanwhile, Cr3C2, Al, together with Cr reacted to form Cr2AlC in a shortened reaction route. The effect of Al2O3 addition on the microstructure and mechanical properties of Cr2AlC/Al2O3 composites was investigated. The results indicated that the as-sintered products consisted of Cr2AlC matrix and Al2O3 reinforcement, and the in situ formed fine Al2O3 particles dispersed at the matrix grain boundaries. The flexural strength and Vickers hardness of the composites increased gradually with increasing Al2O3 content. But the fracture toughness peaked at 6.0 MPa m1/2 when the Al2O3 content reached 11 vol.%. The strengthening and toughening mechanism was also discussed.  相似文献   

10.
Graphene nanoplatelets (GNPs) were used as reinforcement in AgCuTi filler for brazing SiC ceramic. Ti from the filler reacted with SiC ceramic to form TiC and Ti5Si3 adjacent to the SiC ceramic. According to the TEM and HRTEM results, TiC layer exhibited good lattice matching with SiC substrate. TiC particles synthesized by the reaction between Ti and GNPs in situ promoted the heterogeneous nucleation of TiCu and Cu(s,s), and contributed to the refinement of microstructure. Shear tests results indicated that the adoption of GNPs affected the joint property significantly. The TiC particles and an appropriate TiC + Ti5Si3 layer thickness both relieved the residual stress of the brazed joint and thereby increased the joint strength. The shear strength of the joint reached the maximum value of 38 MPa when using AgCuTi/GNPs (GNPs reinforced AgCuTi) composite filler containing 1% GNPs, which was ~139% higher than that of the joint brazed with AgCuTi filler.  相似文献   

11.
《Ceramics International》2017,43(13):9636-9643
Zirconia (ZrO2) ceramic and Nb were successfully brazed using a Mo-particle -reinforced Ag-Cu-Ti composite filler. The effect of the Mo content of the composite filler on the interfacial microstructures and mechanical properties of ZrO2/Nb-brazed joints was investigated. The calculated Ti activity initially increased and then decreased as the Mo content was increased from 1 to 40 wt%, and played a decisive role in the evolution of interfacial products formed adjacent to the ZrO2 ceramic. When 40 wt% Mo particles were added to the composite filler, TiO+Ti3Cu3O reaction layers formed adjacent to the ceramic substrate. By decreasing the Mo content of the filler, the TiO layer became thinner or even vanished, whereas the thickness of the Ti3Cu3O reaction layer increased gradually with decreasing Mo content. Concurrently, a bulky TiCu compound grew near to the ZrO2 ceramic, and further fine TiCu particles were observed in the brazing seam. This microstructure evolution, as well as the mechanism for the formation of joints brazed with composite fillers of differing Mo content, is discussed based on TEM analyses. The shear strength of the brazed joint is clearly improved when a suitable amount of Mo is added to the Ag-Cu-Ti filler. A maximum shear strength of 370 MPa was obtained when ZrO2/Nb joints were brazed with Ag-Cu-Ti+5 wt% Mo composite filler.  相似文献   

12.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   

13.
《Ceramics International》2022,48(8):10770-10778
Pitch-based carbon fibers were assembled in horizontal and thickness directions of SiC/SiC composites to form three-dimensional heat conduction networks. The effects of heat conduction networks on microstructures, mechanics, and thermal conductivities were investigated. The results revealed the benefit of introducing heat conduction networks in the densification of composites. The maximum bending strength and interlaminar shear strength of the modified composites reached 568.67 MPa and 68.48 MPa, respectively. These values were equivalent to 18.6% and 69.4% increase compared to those of composites without channels. However, channels in thickness direction destroyed the continuity of fibers and matrix, creating numerous defects. As the volume fraction of heat conduction channels rose, the pinning strengthening effect of channels and influence of defects competed with each other to result in first enhanced mechanical properties followed by a decline. The in-plane thermal conductivity was found anisotropic with a maximum value reaching 86.20 W/(m·K) after introducing pitch-based carbon unidirectional tapes. The thermal conductivity in thickness direction increased with volume fraction of pitch-based carbon fibers and reached 19.13 W/(m·K) at 3.87 vol% pitch-based carbon fibers in the thickness direction. This value was 90.75% higher than that of composites without channels.  相似文献   

14.
In order to refine the grain size of TiSi2 silicide and reduce the formation of micro-defects in the joint, and thereby increasing the joint strength of SiC ceramic brazed with Si-24Ti (wt.%), a small amount of SiC particulates were added in the brazing alloy. The microstructure and mechanical strength of SiC joints was investigated by using field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction spectrometer, and shear strength test. The results indicated that SiC particulates enhanced the nucleation and grain refinement of the TiSi2 and Si phase. The adding of appropriate content of SiC (<1 wt.%) could effectively refine the size of TiSi2 phase and increase the fraction of Si-TiSi2 eutectic zone. However, excess addition of 1.5 wt.% SiC caused the coarsening of TiSi2 phase due to the clustering of added fine SiC particulates. With the increasing of SiC particulate content, the shear strength of the joints increased at first and then decreased. The maximum shear strength of 106.3 MPa of SiC joint was obtained for the joint brazed with 1 wt.% SiC addition, which was ~19% higher than that of the joint brazed without SiC particulates.  相似文献   

15.
By coating active titanium, Sn0.3Ag0.7Cu (SAC) filler wetted SiC effectively, as the contact angle decreased significantly from ~145° to ~10°. Ti3SiC2 and TiOx (x ≤ 1) reaction layers were formed at the droplet/SiC interface, leading to the reduction of contact angle. Reliable brazing of SiC was achieved using titanium deposition at 900°C for 10 minutes, and the typical interfacial microstructure of Ti-coated SiC/SAC was SiC/TiOx + Ti3SiC2/Sn(s,s). Comparing to direct brazing, Ti–Sn compounds in the brazing seam were effectively reduced and the mechanical property of joints was dramatically improved by titanium coating. The optimal average shear strength of SiC joints reached 25.3 MPa using titanium coating- assisted brazing, which was ∼62% higher than that of SiC brazed joints using SAC-Ti filler directly.  相似文献   

16.
MAX phases, and particularly Ti3SiC2, are interesting for high temperature applications. The addition of carbon fibers can be used to reduce the density and to modify the properties of the matrix. This work presents the densification and characterization of Ti3SiC2 based composites with short carbon fibers using a fast and simple fabrication approach: dry mixing and densification by Spark Plasma Sintering. Good densification level was obtained below 1400 °C even with a high amount of fibers. The reaction of the fibers with the matrix is limited thanks to the fast processing time and depends on the amount of fibers in the composite. Bending strength at room temperature, between 437 and 120 MPa, is in the range of conventional CMCs with short fibers and according to the resistance of the matrix and the presence of residual porosity. Thermo-mechanical properties of the composites up to 1500 °C are also presented.  相似文献   

17.
By pressure infiltrating pre-ceramic polymer polycarbosilane (PCS) into thermally and mechanically stable silica nanofoam, followed by PCS pyrolysis and silica template removal, synthesis of large-scale monolithic SiC nanofoams has been accomplished. Tailoring of the porosity and cell size of the SiC nanofoam has been realized by dissociating the porosity and pore size of the silica nanofoam. Because of the surface hardening and increased surface volume ratio of deformable nanopores, with the same porosity, the decrease of nanopore size has led to an increase in the quasi-static and dynamic indentation resistance for SiC nanofoams.  相似文献   

18.
The effects of the SiC nanowires (SiCNWs) and PyC interface layers on the mechanical and anti-oxidation properties of SiC fiber (SiCf)/SiC composites were investigated. To achieve this, the PyC layer was coated on the SiCf using a chemical vapour infiltration (CVI) method. Then, SiCNWs were successfully coated on the surface of SiCf/PyC using the electrophoretic deposition method. Finally, a thin PyC layer was coated on the surface of SiCf/PyC/SiCNWs. Three mini-composites, SiCf/PyC/SiC, SiCf/PyC/SiCNWs/SiC, and SiCf/PyC/SiCNWs/PyC/SiC, were fabricated using the typical precursor infiltration and pyrolysis method. The morphologies of the samples were examined using scanning electron microscopy and energy dispersive X-ray spectrometry. Tensile and single-fibre push-out tests were carried out to investigate the mechanical performance and interfacial shear strength of the composites before and after oxidization at 1200 °C. The results revealed that the SiCf/PyC/SiCNWs/SiC composites showed the best mechanical and anti-oxidation performance among all the composites investigated. The strengthening and toughening is mainly achieved by SiCNWs optimization of the interfacial bonding strength of the composite and its own nano-toughening. On the basis of the results, the effects of SiCNWs on the oxidation process and retardation mechanism of the SiCf/SiC mini-composites were investigated.  相似文献   

19.
A layered filler consisting of Ti3SiC2-SiC whiskers and TiC transition layer was used to join SiCf/SiC. The effects of SiCw reinforcement in Ti3SiC2 filler were examined after joining at 1400 or 1500 °C in terms of the microstructural evolution, joining strength, and oxidation/chemical resistances. The TiC transition layer formed by an in-situ reaction of Ti coating resulted in a decrease in thermal expansion mismatch between SiCf/SiC and Ti3SiC2, revealing a sound joint without cracks formation. However, SiCf/SiC joint without TiC layer showed formation of cracks and low joining strength. The incorporation of SiCw in Ti3SiC2 filler showed an increase in joining strength, oxidation, and chemical etching resistance due to the strengthening effect. The Ti3SiC2 filler containing 10 wt.% SiCw along with the formation of TiC was the optimal condition for joining of SiCf/SiC at 1400 °C, showing the highest joining strength of 198 MPa as well as improved oxidation and chemical resistance.  相似文献   

20.
The hardness and toughness of regenerated cemented carbides, in general, are contradictory. Therefore, it is critical to explore regenerated cemented carbides with both high hardness and high toughness. In this study, regenerated WC-8-wt% Co cemented carbide with SiC nanowhisker were prepared by low-pressure sintering. The influence of SiCw contents on the microstructure and mechanical properties of regenerated WC-8-wt% Co cemented carbide was investigated. The results indicated that the hardness, density, flexural strength, and fracture toughness of regenerated cemented carbide first increased and then decreased with the addition of SiCw. The Vickers hardness, density, flexural strength, and fracture toughness could reach 1575 HV, 14.6 g/cm3, 2204 MPa, 16.85 MPa·m1/2, respectively, with SiCw content 0.5 wt%, which were increased by 14.4%, 0.7%, 12.2%, and 17.3%, respectively, when compared with the regenerated cemented carbide without SiCw. The lowest friction coefficient and the best wear resistance could be also reached when 0.5-wt% SiCw was added. The fracture mechanism of the regenerated cemented carbide contained both transgranular and intergranular fracture through the microscopic observation of fracture surface via scanning electron microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号