首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
王琳  周漪  李传鹏  刘杰 《表面技术》2022,51(2):259-267
目的 研究NaCl溶液中苯并三唑(BTA)对碳钢/铜合金电偶腐蚀行为的影响.方法 使用丝束电极(WBE)技术和电化学阻抗谱(EIS)技术研究在未添加和添加BTA的NaCl溶液中,丝束电极表面的电位分布、电流密度分布和电化学阻抗谱演化,同时对比分析碳钢区域与铜合金区域的阻抗谱特征.结果 在未添加BTA的条件下浸泡72 h...  相似文献   

3.
碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究   总被引:10,自引:0,他引:10  
采用动电位极化技术及失重法研究Q235B碳钢/TA2钛和Q235B碳钢/TA2钛/海军黄铜在海水中的电偶腐蚀规律.测定了Q235B碳钢、TA2钛和海军黄铜在海水中的自然腐蚀电位、腐蚀速率和稳态极化曲线,测定了不同面积比时电偶对电偶电流的大小、方向,电偶电位以及电偶对阳极和阴极的失重速率,由电偶对不同面积比的数据得到Q235B碳钢被Ti电偶极化的动态极化曲线.结果表明,阳极的腐蚀速率随阴/阳极面积比的增大而增加;阳极腐蚀速率随阴/阳极面积比的增大有一个极限值,即当阴/阳极面积比大于这个极限值时,阳极腐蚀速率不再增加.这三种金属构成的电偶对,海军黄铜是这个系统的阴极,受到碳钢的保护.  相似文献   

4.
王开军 《腐蚀与防护》1994,15(5):244-246,257
1 前言 不同金属在相同土壤条件下的电极电位不同。一旦异种金属发生接触,并通过土壤形成回路,构成电偶电池,电位较负的金属成为阳极,腐蚀速度加快;而电位较正的金属成为阴极,受到保护。电偶腐蚀是埋地金属腐蚀中常见的一种腐蚀形式。牺牲阳极型阴极保护正是运用了电偶腐蚀的特点来达到保护目的的。另外,在土壤腐蚀性研究中,还可以利用电偶电池对阳极的加速腐蚀作用,来快速评判土壤的腐蚀性。不过,目前涉及到土壤中的电偶腐蚀的研究并不多,电偶腐蚀在土壤中表现出的一些特点还有待于进一步了解和探讨。本工作初步研究了碳钢  相似文献   

5.
6.
采用动电位极化、电偶电流、腐蚀形貌分析等方法研究了在3.5%NaCl溶液中介质流动对316L/2205和431/2205不锈钢电偶腐蚀的影响。与42CrMo/316L偶对对比发现316L/2205、431/2205和42CrMo/316L电偶中316L、431和42CrMo均作为阳极,其腐蚀受到加速,三种偶对的电偶腐蚀倾向大小为:316L/2205431/220542CrMo/316L;电偶电流测量发现介质流动可以增大三种偶对的电偶电流,偶对431/2205存在电偶电流和电位暂态峰。腐蚀形貌分析发现,静止条件下316L、2205和431不锈钢没有明显的腐蚀,42CrMo钢表面覆盖锈蚀层;流动条件下431不锈钢表面点蚀坑形成并附着腐蚀产物,42CrMo表面局部形成锈蚀层,结合形貌分析认为,431/2205偶对中电流暂态峰的出现与蚀坑中锈蚀层的形成有关。  相似文献   

7.
在油田中管材应用种类繁多,难免存在不同材料的耦接使用。应用电化学法和溶液浸泡方法研究了P110SS-Inconel 718两种材料耦接的电偶对在含高Cl-的饱和CO2溶液中的电偶腐蚀行为,用扫描电镜(SEM)观察电偶对材料浸泡后的腐蚀形貌。结果表明:在Cl-浓度不变的情况下,随着溶液介质温度的升高,两种材料的自腐蚀电位均有不同程度的降低;耦接后,电偶对的电偶电流密度随着温度的升高而增大,表面腐蚀坑明显增深。浸泡试验表明:耦接后作为阳极的P110SS的腐蚀程度相比单独浸泡时加剧。  相似文献   

8.
碳钢/紫铜在NaCl介质中的电偶行为   总被引:7,自引:1,他引:7  
测定了碳钢/此铜在不同NaCl浓度、温度、阴阳极面积比的电偶电位、电偶电流。结果表明:温度、面积比和氯离子浓度对电偶电流影响较大。  相似文献   

9.
针对活性γ型宫内节育器,研究了在PH6-8的生理盐水中消炎痛对铜与不锈钢的电偶腐蚀的影响。消炎痛不影响铜的自然腐包电位及其随溶液PH的升高而正移的规律;  相似文献   

10.
模拟宫腔液中铜与不锈钢的电偶腐蚀   总被引:1,自引:1,他引:1  
VCu宫内节育器中,纯铜丝与不锈钢中心丝相互偶合。为了了解这种条件下发生的电偶腐蚀,在模拟宫腔液中进行了实验研究。这时铜是阳极,不锈钢是阴极,电偶过程受阴极过程控制。铜与不锈钢偶合反的腐蚀增量随介质pH的降低而变大。如果不锈钢表面预先活化,与铜偶合时的极性相反,铜成为阴极得到保护,而不锈钢作为阳极加速了腐蚀。随着不锈钢表面的钝化、电位朝正方向移动,然后回复到通常的电偶腐蚀行为。  相似文献   

11.
海水中钢的电偶腐蚀研究   总被引:13,自引:5,他引:13  
获取了不同电位差的钢偶对在海水吧不同面积比偶合的腐蚀结果,讲座了海水中钢偶对的电偶腐蚀行为;对文献中推导的海水中钢偶对的腐蚀速度公式进行了检验和简化,海水中钢偶对阳极的腐蚀速度随阴、阳极自腐蚀电极差和阴/阳极面积比的增大而增大,阳极的腐蚀速度与阴/阳极面积比的关系是非线性的,且阳极的腐蚀速度随阴/阳极面积比的增大有一个极限值,阴极的腐蚀速度随阴/阳极面积比减小和阴/阳极电位差增大而减小,简化的海水中钢偶对的腐蚀速度公式与试验结果符合较好。  相似文献   

12.
研究了含稀土316S和310S型不锈钢在650℃下(Li,K)2CO 3共晶熔盐中的腐蚀行为.结果表明:稀土元素能够通过促进富Cr氧化膜的形成而提高310S不 锈钢的耐蚀性能.316L(RE)由于具有较低的Cr含量,其耐蚀性能劣于310S合金.讨论了不锈钢 在熔盐中的腐蚀机理.  相似文献   

13.
碳钢的不均匀性和土壤中阴离子对腐蚀的影响   总被引:5,自引:1,他引:5  
对埋藏在土壤中20年以上的碳钢腐蚀进行了分析,扫描电镜、能谱和金相分析结果表明,钢中夹杂物.焊缝区域易产生点蚀,土壤中存在硫酸根和氨离子也是产生点蚀的重要因素.  相似文献   

14.
温度对Cr13不锈钢在含CO_2溶液中电化学腐蚀的影响   总被引:2,自引:0,他引:2  
利用高温高压电化学测试技术,研究了温度对Cr13不锈钢CO2腐蚀机理的影响.研究表明:90~120℃温度范围内,Cr13不锈钢以点蚀为主,电极反应由活化控制;随着温度的升高,点蚀敏感性逐渐降低,150℃时发生全面腐蚀,而电极反应主要受扩散控制.  相似文献   

15.
Q235-304L电偶对在Na2S溶液中的电偶腐蚀行为研究   总被引:6,自引:0,他引:6  
用电化学法和浸泡法研究了Q235-304L电偶对在3种不同浓度的Na2S溶液中的电偶腐蚀行为,用SEM观察试样的表面形貌.结果表明:在3种溶液中Q235钢的阳极过程均为混合控制,而304L的阴阳极过程均为电化学控制;偶接后Q235钢表面阳极金属的溶解过程与阴极过程同时进行,其阳极溶解电流大于电偶电流值;电偶腐蚀效应随阴阳极面积比的增大而增大;随着S2-浓度的升高,电偶对中Q235钢的腐蚀速率减小,电偶腐蚀效应也随之降低.  相似文献   

16.
硫脲衍生物对CO2饱和水溶液中碳钢缓蚀性能的研究   总被引:8,自引:0,他引:8  
用失重法及极化曲线方法了在CO2饱和水溶液中几种硫脲衍生物对碳对钢的缓蚀作用。利用缓蚀协同效应得到了同温度下缓蚀效果良好的缓蚀剂。  相似文献   

17.
新型巯基三唑化合物对HCl介质中碳钢的缓蚀作用研究   总被引:3,自引:2,他引:3  
合成了两种新型巯基三唑化合物,分别采用腐蚀失重法、动电位扫描极化曲线和交流阻抗法研究了其在1.0mol/L HCl介质中对Q235钢的缓蚀作用,分析了缓蚀作用机理.结果表明:对碳钢在1.0mol/L HCl溶液中,合成的巯基三唑化合物是性能优异的缓蚀剂.  相似文献   

18.
Cl-浓度对CrCoMo不锈钢耐蚀性能的影响   总被引:1,自引:0,他引:1  
循环极化研究了CrCoMo不锈钢在去离子水和不同浓度NaCl溶液中的腐蚀行为,探讨了Cl-浓度对其耐蚀性能的影响。结果表明,在NaCl溶液中,CrCoMo不锈钢的耐蚀性能变差,且随着Cl-浓度增加,耐蚀性能降低;腐蚀形貌呈现孔蚀特征。第二相沿晶界析出及夹杂物的存在,使CrCoMo不锈钢表面难以形成完整钝化膜。   相似文献   

19.
碳钢在CO2-H2S体系中的腐蚀规律研究   总被引:8,自引:0,他引:8  
采用氢扩散法,交流阻抗法和电子针分析研究碳钢在弱酸条件下的aCl溶液中通入CO2,以及加入微量H2S的腐蚀过程和渗氢量之间的关系,C烃及H2S的浓度在不同PH值对这个过程的影响,研究其腐蚀机理。实验表明,PH值在4~6.5之间的,CO2以及H2S对腐蚀过程和渗氢过程有着明显的加速作用,并且,随着PH值的降低,C烽H2S对渗氢量的增加有明显的促进作用。  相似文献   

20.
采用动电位和恒电位技术研究了低碳钢在NaHCO3 -NaCl体系中的点蚀电位和再钝化电位的分布以及 5种阴离子对它们的影响 .结果表明 ,点蚀电位和再钝化电位均服从正态分布 ;在 5种阴离子中 ,NO-2 和MoO2 -4 能够抑制点蚀的发生和发展 ,而SO2 -4 、NO-3 在低浓度时降低点蚀电位和再钝化电位 ,促进点蚀的发生 ,在高浓度时能够破坏自钝化 ;Cr2 O2 -7能显著抑制点蚀的发生 ,然而点蚀一旦产生后它却能加速点蚀的发展  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号