首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dry sliding wear of fly ash particle reinforced A356 Al composites   总被引:3,自引:0,他引:3  
Sudarshan  M.K. Surappa 《Wear》2008,265(3-4):349-360
In the present study aluminium alloy (A356) composites containing 6 and 12 vol. % of fly ash particles have been fabricated. The dry sliding wear behaviour of unreinforced alloy and composites are studied using Pin-On-Disc machine at a load of 10, 20, 50, 65 and 80 N at a constant sliding velocity of 1 m/s. Results show that the dry sliding wear resistance of Al-fly ash composite is almost similar to that of Al2O3 and SiC reinforced Al-alloy. Composites exhibit better wear resistance compared to unreinforced alloy up to a load of 80 N. Fly ash particle size and its volume fraction significantly affect the wear and friction properties of composites. Microscopic examination of the worn surfaces, subsurfaces and debris has been done. At high loads (>50 N), where fly ash particles act as load bearing constituents, the wear resistance of A356 Al alloy reinforced with narrow size range (53–106 μm) fly ash particles were superior to that of the composite having the same volume fraction of particles in the wide size range (0.5–400 μm).  相似文献   

2.
In the present study, the dry sliding wear behavior of rheocast A356 Al alloys, cast using a cooling slope, as well as gravity cast A356 Al alloy have been investigated at a low sliding speed of 1 ms?1, against a hardened EN 31 disk at different loads. The wear mechanism involves microcutting–abrasion and adhesion at lower load for all of the alloys studied in the present work. On the other hand, at higher load, mainly adhesive wear along with oxide formation is observed for gravity cast A356 Al alloy and rheocast A356 Al alloy, cast using a 45° slope angle. Unlike other alloys, 60° slope rheocast A356 Al alloy is found to undergo mainly abrasive wear at higher load. Accordingly, the rheocast sample, cast using a 60° cooling slope, exhibits a remarkably lower wear rate at higher load compared to gravity cast and 45° slope rheocast samples. This is attributed to the dominance of abrasive wear at higher load in the case of rheocast A356 Al alloy cast using a 60° slope. The presence of finer and more spherical primary Al grain morphology is found to resist adhesive wear in case of 60° cooling slope processed rheocast alloy and thereby delay the transition of the wear regime from normal wear to severe wear.  相似文献   

3.
Aluminium alloy (Al/3.25Cu/8.5Si) composites reinforced with fly ash particles of three different size ranges (53–75?μm, 75–103?μm and 103–125?μm) in 3, 6 and 9 wt-% were fabricated using liquid metallurgy technique. Pin on disc abrasive wear tests were carried against the disc surface fixed with SiC emery paper (120 grades). A mathematical model was developed to predict the abrasive wear and coefficient of friction of the composites. Analysis of variance technique was used to check the validity of the developed model. Composites reinforced with coarse fly ash particles exhibited better abrasive wear resistance than those reinforced with fine fly ash particles. Abrasive wear in composites with fine fly ash particles is a combination of adhesive wear and abrasive wear. Larger fly ash particles present in composites gets fractured into fine particles and entrapped between the composite pin and the disc, thereby decreasing the wear rate. Worn surfaces of the pins were then analysed using scanning electron microscopy to study the wear mechanisms of the composites. The abrasive wear was optimised using desirability based multiobjective optimisation technique.  相似文献   

4.
The abrasive wear resistance of composite alloys comprising hard tungsten carbide and soft CuNiMn matrix under different wear conditions has been investigated and compared with CrMo cast iron. It was found that Yz-composite alloy with hard cast angular tungsten carbide has greater wear resistance than CrMo cast iron under two-body wear conditions, but lower resistance than Cr-Mo cast iron under three-body wear conditions. It was found that under three-body wear conditions selective wear of the matrix and digging or fragmentation of tungsten carbide particles dominate in Yz-composite alloy, and microcutting and deformed ploughing is dominant under two-body wear conditions. The abrasive wear resistance of composite alloys under two-body wear condition is independent of bulk hardness, but is closely related to the microhardness of tungsten carbide.  相似文献   

5.
磨粒对ADZ复合陶瓷材料磨损性能的影响   总被引:3,自引:1,他引:3  
采用块 -块摩擦磨损试验机在不同磨粒的 5 %NaOH泥浆中 ,对氧化铝增强四方氧化锆多晶陶瓷材料 (ADZ)的磨损性能进行了研究。研究结果表明尖锐磨粒对ADZ复合陶瓷材料磨损的影响要比球形磨粒严重的多 ,磨料硬度是影响陶瓷材料磨损率的重要因素 ,磨损率随磨粒硬度的提高而增大。在不同形状的SiO2 磨粒的泥浆中ADZ陶瓷材料的主要磨损机理为塑性变形和微犁削。在高硬度Al2 O3磨料的泥浆中ADZ陶瓷材料磨损表面以断裂机制占主导地位。  相似文献   

6.
用机械共混-模压法制备了Ekonol/PEEK复合材料,通过摩擦磨损实验方法对材料的摩擦学性能进行了研究,并用SEM对磨损表面进行了观察和分析,在此基础上探讨了复合材料的磨损机理。结果表明:用机械共混-模压法能制得摩擦学性能优良的Ekonol/PEEK复合材料,随着Ekonol含量的增加,复合材料的磨损机理发生了由微切削,剥层,粘着磨损向疲劳磨损的转变。  相似文献   

7.
In this study, the effect of wettability improvement of SiCp on the impact and sliding wear behavior of A356/20 wt% SiCp composites produced by a compocasting technique has been investigated. The result showed an increase of incorporation and uniform distribution of SiCp in the A356 matrix by elimination of SiCp segregation. Desired bonding between SiCp and the aluminum matrix due to improved wettability resulted in enhanced properties in terms of improved impact toughness and wear resistance. This improvement was also associated with partial refinement of coarse eutectic silicon due to increased incorporation and distribution of SiCp reinforcements. The highest enhancement was obtained when 1% Mg was added into the melt in addition to pretreated SiCp. The impact toughness value increased by 10 and 26% and the wear rate decreased by 5 and 30% when the SiC was treated and when Mg was added, respectively, compared to as-received SiCp. The impact fracture surfaces showed fewer decohered and well-bonded SiC particles in A356–(SiC-treated-Mg) composite. The highest wear resistance of A356/SiCp composites was achieved by A356–(SiC-treated-Mg) composite for applied loads of 10 and 20 N compared to other fabricated composites. The worn surface revealed mild abrasion and adhesion wear mechanisms.  相似文献   

8.
Bronze-uncoated and nickel-coated graphite composites were fabricated by powder metallurgy route. The tribological behaviors of composites sliding against AISI52100 steel ball under dry sliding condition were studied using a ball-on-disk tribometer. The nickel-coated graphite composites showed much better tribological properties in comparison with bronze and uncoated graphite composite. The friction coefficient of nickel-coated graphite composites decreased with increasing nickel-coated graphite content. However, the specific wear rate increased with the increase in nickel-coated graphite. The composite containing 15?wt% nickel-coated graphite showed the best self-lubricating properties because the compacted and stable mechanical mixed layer was formed on the worn surfaces. The wear mechanism of bronze 663 is adhesive wear and abrasive wear. The uncoated nickel-coated graphite composite shows the adhesive wear and delamination characteristics. However, the wear mechanism of nickel-coated composites is mildly abrasive wear.  相似文献   

9.
In this experimental study, the dry sliding wear and two-body abrasive wear behaviour of graphite filled carbon fabric reinforced epoxy composites were investigated. Carbon fabric reinforced epoxy composite was used as a reference material. Sliding wear experiments were conducted using a pin-on-disc wear tester under dry contact condition. Mass loss was determined as a function of sliding velocity for loads of 25, 50, 75, and 100 N at a constant sliding distance of 6000 m. Two-body abrasive wear experiments were performed under multi-pass condition using silicon carbide (SiC) of 150 and 320 grit abrasive papers. The effects of abrading distance and different loads have been studied. Abrasive wear volume and specific wear rate as a function of applied normal load and abrading distance were also determined.The results show that in dry sliding wear situations, for increased load and sliding velocity, higher wear loss was recorded. The excellent wear characteristics were obtained with carbon-epoxy containing graphite as filler. Especially, 10 wt.% of graphite in carbon-epoxy gave a low wear rate. A graphite surface film formed on the counterface was confirmed to be effective in improving the wear characteristics of graphite filled carbon-epoxy composites. In case of two-body abrasive wear, the wear volume increases with increasing load/abrading distance. Experimental results showed the type of counterface (hardened steel disc and SiC paper) material greatly influences the wear behaviour of the composites. Wear mechanisms of the composites were investigated using scanning electron microscopy. Wear of carbon-epoxy composite was found to be mainly due to a microcracking and fiber fracture mechanisms. It was found that the microcracking mechanism had been caused by progressive surface damage. Further, it was also noticed that carbon-epoxy composite wear is reduced to a greater extent by addition of the graphite filler, in which wear was dominated by microplowing/microcutting mechanisms instead of microcracking.  相似文献   

10.
The dry-sliding tribological behavior of A206 aluminum alloy containing silica sand was investigated using a three pin-on-disk tribometer against an SAE 1045 steel counterface. The worn surfaces of the pins were then analyzed by optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS). The test results showed that the addition of silica sand particles decreased the friction coefficient of Mg modified A206 alloy. The wear rate of the composites increased with increases in the applied pressure from 0.35 to1.75 MPa and with increases in the silica sand content from 0% to 13%. The wear rate variation with the applied pressure is attributed to the shift in the dominant wear mechanisms from oxidation and mild abrasive wear at applied pressures at and below 0.35 MPa to delamination accompanied by severe abrasive wear at applied pressure levels above 0.35 MPa. The high wear rate may be as a result of an overall decrease of the fracture toughness of the composites containing silica particles. The temperature near the counterface surface increased with increases in both silica content and the applied pressure due to the lower thermal conductivity of silica sand and greater abrasion that occurs at higher silica contents. A T6 heat treatment did not significantly decrease the friction coefficient or the wear rate of either the A206 matrix alloys or the composite containing silica sand.  相似文献   

11.
纳米和微米SiO2颗粒对PPESK复合材料摩擦学性能的影响   总被引:2,自引:1,他引:2  
邵鑫  薛群基 《机械工程材料》2004,28(6):39-42,45
用热压成型法制备了纳米、微米SiO2填充聚醚砜酮(PPESK)复合材料,考察了复合材料的硬度和抗弯强度,并研究了干摩擦条件下纳米、微米SiO2颗粒对复合材料摩擦磨损性能的影响,用扫描电镜观察分析了复合材料磨损表面形貌及磨损机理。结果表明:干摩擦条件下,纳米SiO2填充PPESK主要是轻微的磨粒磨损;而微米SiO2填充PPESK主要是严重的磨粒磨损。  相似文献   

12.
High strength, light weight, ease of fabrication, excellent castability, and good wear resistance make aluminum alloy composites suitable for commercial applications. In this work, a silica-rich ash particle (palmyra shell ash) was reinforced with aluminum alloy (AlSi10Mg) composites and its mechanical and tribological properties were studied. The aluminum alloy was reinforced with 3, 6, and 9 wt% of palmyra shell ash particles, and its dry sliding wear behavior was studied using a pin-on-disc machine under different loading conditions. The result shows that the dry sliding wear resistance of Al–palmyra shell ash composites was almost similar to that of fly ash– and rice husk ash–reinforced Al-alloy composites and these composites exhibit better wear resistance compared to unreinforced alloy. The palmyra shell ash particle weight fraction significantly affects the wear and friction properties of the composites. Scanning electron microscopic examination of the worn surface reveals that at various loads palmyra shell ash particles act as load-bearing constituents and the wear resistance of the reinforced palmyra shell ash with a size range of 1–50 µm was superior to that of unreinforced alloy. Mechanical properties (hardness and tensile strength) were also studied and it was observed that the reinforced Al-alloy showed a significant increase in mechanical properties.  相似文献   

13.
采用铺层/热压烧结的方法制备交叉铺层的碳纤维增强环氧树脂复合材料,探究配副材料及载荷对铺层材料摩擦学性能的影响,并探讨复合材料的磨损机制。结果表明:随着载荷的增加,复合材料的摩擦因数逐渐降低,磨损率则逐渐增加;在研究的载荷下,复合材料与轴承钢配副时摩擦因数较低,而与Si3N4和Al2O3陶瓷球配副时润滑性能较差;在低载荷下复合材料与轴承钢配副时磨损率较高,高载荷下则相反。磨损表面形貌分析显示:当施加的载荷较低时,磨损表面形貌主要为犁沟及少量裂纹,磨损机制主要为磨粒磨损;当载荷较高时,高的接触应力使磨损表面产生了大量裂纹并伴随树脂基体脱落,磨损机制由磨粒磨损转变为疲劳磨损。  相似文献   

14.
Hardfaced martensitic stainless steel alloy was deposited on mild steel substrate by flux cored arc welding method. The slurry abrasion studies of weld-deposited hardfaced steel were performed using slurry abrasion test rig with 250–300 μm silica sand particles. The effect of weld compositional gradation on the abrasive wear resistance of hardfaced stainless steel at a distance of 0.6, 1.2, 2.4, 3.0 and 3.6 mm from the top surface was studied. The observed abrasion rates were rationalized in terms of mass loss, hardness and distance from the top surface i.e. diluted surfaces beneath the top surface. The abrasive wear mass loss increased with increasing distance beneath the top surface, which was attributed to the coarsening and morphology change in martensite phase. The results of the present work indicated change in morphology of martensite with increase in the distance beneath the top surface. The operating abrasive wear mechanisms involved ploughing, microcutting and indentation.  相似文献   

15.
Rice husk ash of three different particle size ranges (50–75, 75–100 and 100–150 μm) a 3, 6, 9, and 12% by weight is reinforced with an aluminum alloy (AlSi10Mg) using the liquid metallurgy method. The dry sliding wear behavior of the composites in the cast conditions is examined using the pin-on-disc tribotesting machine for three different loads (20, 30, and 40 N) with three different sliding velocities (2, 3, and 4 m/s). The results reveal that the composite reinforced with the coarse rice husk ash particles exhibits superior wear resistance compared to the fine rice husk ash particles. The wear rate of the composite decreased with an increase in the weight percentage of rice husk ash particles for all size ranges. Finally, the wear mechanism was investigated with the worn surface using a scanning electron microscope.  相似文献   

16.
In the present study, the effect of the Al2O3 particles (average size of 12 μm, 3 and 10 wt.%) reinforcement on the microstructure and tribological properties of Al–Si alloy (A356) was investigated. Composites were produced by applying compocasting process. Tribological properties of unreinforced alloy and composites were studied, using pin-on-disc tribometer, under dry sliding conditions at different specific loads and sliding speed of 1 m/s. Microhardness measurements, optical microscope and scanning electron microscope were used for microstructural characterization and investigation of worn surfaces and wear debris. During compocasting of A356 alloy, a transformation from a typical dendritic primary α phase to a non-dendritic rosette-like structure occurred. Composites exhibited better wear resistance compared with unreinforced alloy. Presence of 3 wt.% Al2O3 particles in the composite material affected the wear resistance only at specific loads up to 1 MPa. The wear rate of composite with 10 wt.% Al2O3 particles was nearly two order of the magnitude lower than the wear rate of the matrix alloy. Dominant wear mechanism for all materials was adhesion, with others mechanisms: oxidation, abrasion and delamination as minor ones.  相似文献   

17.
《Wear》2007,262(3-4):262-273
The objective of the present investigation was to assess the influence of SiC particle dispersion in the alloy matrix, applied load, and the presence of oil and oil plus graphite lubricants on the wear behaviour of a zinc-based alloy. Sliding wear performance of the zinc-based alloy and its composite containing SiC particles has been investigated in dry and lubricated conditions. Base oil or mixtures of the base oil with different percentages of graphite were used for creating the lubricated conditions. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloys. It was also observed that there exists an optimum concentration of graphite particles in the lubricant mixture that leads to the best wear performance. The composite experienced higher frictional heating and friction coefficient than the matrix alloy in all the cases except oil lubricated conditions; a mixed trend was noticed in the latter case. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.Examination of worn surfaces revealed a change of predominating wear mechanisms from severe ploughing and/or abrasive wear for base alloy to delamination wear for the reinforced material under dry sliding conditions. The presence of the lubricant increased the contribution of adhesive wear component while reducing the severity of abrasion. This was attributed to the generation of more stable lubricant films on the contacting surfaces. Cross-sections of worn surfaces indicated substantial wear-induced plastic deformation, thereby suggesting adhesive wear to be a predominant wear mechanism in this study. The debris particles revealed deformed flakes and machining chips signifying the involvement of adhesion and abrasion modes of wear respectively.  相似文献   

18.
Larsson  P.  Axén  N.  Akdogan  G.  Ekström  T.  Gordeev  S. 《Tribology Letters》2004,16(1-2):59-64
A tribological study has been carried out on a new type of carbide-metal composite, in which the two phases form a continuous skeleton microstructure interwoven throughout the body. The composites' resistance to two-body abrasion is evaluated in a pin-on-drum set-up with diamond and SiC abrasive papers. Also sliding wear and friction tests with steel and alumina as counter materials were undertaken. The composites show promising tribological properties, comparable to those of established wear resistant materials. Scanning electron microscopy was used to study the worn surfaces. The implications of the skeleton microstructure on the abrasive wear resistance are discussed on the basis of a wear model for multiphase materials.  相似文献   

19.
The influence of graphite content on the dry sliding wear characteristics of Al6061/Gr composites along with Al6061/30SiC/Gr hybrid composites has been assessed using a pin-on-disc wear test. The composites with different volume fraction of graphite particles up to 13% were processed by in situ powder metallurgy (IPM) technique. The porosity and hardness of the resultant composites were also examined. It was found that an increase in the graphite content reduced the porosity, hardness, and friction coefficient of both types of composites. The hybrid composites were more porous and exhibited higher hardness and lower coefficient of friction at identical graphite contents. The increased graphite content in the range of 0–13 vol.% resulted in increased wear rate of Al/Gr composites. The Al/30SiC composite exhibited a lower wear rate as compared with the base alloy and graphite addition up to 9 vol.% improved the wear resistance of these hybrid composites. However, more graphite particles addition resulted in increased wear rate. SEM micrographs revealed that the wear mechanism was changed from mostly adhesive in the base alloy sample (Al/0Gr) to the prominently abrasive and delamination wear for Al/Gr and Al/SiC/Gr/composites.  相似文献   

20.
利用MMU-5G销-盘式端面磨损试验机考察Si3N4-hBN陶瓷复合材料与Fe-B合金配副分别在干摩擦和水润滑条件下的摩擦磨损性能,分别采用扫描电子显微镜( SEM)、激光扫描显微镜(LSM)、X光电子能谱(XPS)、X射线能谱(EDS)和X射线衍射(XRD)分析摩擦面及磨屑的形貌与物质组成.结果表明,hBN的加入未能有效地改善Si3N4-hBN/Fe-B合金摩擦副的摩擦学性能,干摩擦条件下,Si3N4-hBN摩擦表面微凸体与Fe-B合金中的硬质相Fe2B发生碰撞而导致脆性断裂和剥落,发生磨粒磨损,摩擦因数均高于0.9,磨损率均高于10-5 mm3/ (N·m)数量级;水润滑条件下,由于水流带走了磨屑,避免磨粒磨损的发生,为Si3N4-hBN摩擦表面发生化学抛光提供条件,化学抛光使销、盘试样的摩擦表面变得光滑,从而获得较为优异的摩擦学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号