首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
In this article, a reconfigurable cross parasitic antenna is proposed to achieve complete azimuthal beam scanning and tunable beamwidth in the E‐ and H‐plane. The antenna consists of a square‐shaped driven element and four size‐tunable parasitic elements placed on each side of the driven element. Each tunable parasitic element is composed of a hexagonal slot loaded with two varactor diodes. The tunable parasitic element shows dual‐resonance behavior and hence its effective electrical size can be controlled with respect to the driven element. The radiated beam of the cross antenna is continuously scanned in the elevation plane from θ = 0° to 10.8°, 0° to 32.4°, and 0° to 40° in ? = (0°, 180°), (45°, 135°, 225°, 315°), and (90°, 270°) planes, respectively. Moreover, the 3‐dB beamwidth of the cross antenna is continuously tuned from 65° to 152° and from 64° to 116° in the E‐ and H‐plane, respectively. The antenna shows good impedance matching in all the operating modes with ?10 dB bandwidth from 2.43 to 2.47 GHz. A prototype of the antenna is fabricated to experimentally verify the simulated reflection and radiation characteristics.  相似文献   

2.
A circular disk patch antenna loaded with a hemi‐circular slot is initially proposed for achieving circular polarization (CP). To exhibit broad CP bandwidth that can cover the WLAN 2.4 GHz operating band, the patch antenna is fed by an L‐shaped probe. To further attain conical beam radiation with peak gain of ~8 dBic at ±30 degrees theta angle (θ), a 2 × 2 array type is proposed in this study, in which four circular disk patch array elements are arranged in a sequentially rotated fashion via a corporate feed network. Here, desirable 3‐dB axial ratio (AR) bandwidth and 10‐dB impedance bandwidth of ~5% and 21% were measured. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:223–228, 2014.  相似文献   

3.
In this paper, a dual‐polarized cross‐dipole antenna with wide beam and high isolation is designed and analyzed for base station. The proposed antenna consists of two planar cross dipoles with four square patches, two L‐shaped microstrip lines, two ground plates, four parasitic patches, and a reflector. The square patches are placed between the center of cross dipoles to couple with L‐shaped microstrip lines. By introducing the parasitic patches, the wide beam can be realized. The measured results show that the proposed antenna achieves an impedance bandwidth (|S11| < ?10 dB) of about 18.7% (1.9‐2.35 GHz) and an isolation better than 30 dB. A measured gain of 5.7 dBi and a half‐power beamwidth over 120° at the center frequency are obtained. Furthermore, the size of the proposed antenna is only 0.5λ0 × 0.5λ0 × 0.22λ0 (λ0 is wavelength at the center frequency).  相似文献   

4.
Computational heat transfer analysis often involves moving fluxes which induce traveling fronts of phase change coupled to one or more field variables. Examples are the transient simulation of melting, welding or of additive manufacturing processes, where material changes its state and the controlling fields are temperature and structural deformation. One of the challenges for a numerical computation of these processes is their multi-scale nature with a highly localized zone of phase transition which may travel over a large domain of a body. Here, a transient local adaptation of the approximation, with not only a refinement at the phase front, but also a de-refinement in regions, where the front has passed is of advantage because the de-refinement can assure a bounded number of degrees of freedom which is independent from the traveling length of the front.We present a computational model of this process which involves three novelties: (a) a very low number of degrees of freedom which yet yields a comparatively high accuracy. The number of degrees of freedom is, additionally, kept practically constant throughout the duration of the simulation. This is achieved by means of the multi-level hp-finite element method. Its exponential convergence is verified for the first time against a semi-analytic, three-dimensional transient linear thermal benchmark with a traveling source term which models a laser beam. ( b) A hierarchical treatment of the state variables. To this end, the state of the material is managed on a separate, octree-like grid. This material grid may refine or coarsen independently of the discretization used for the temperature field. This methodology is verified against an analytic benchmark of a melting bar computed in three dimensions in which phase changes of the material occur on a rapidly advancing front. (c) The combination of these technologies to demonstrate its potential for the computational modeling of selective laser melting processes. To this end, the computational methodology is extended by the finite cell method which allows for accurate simulations in an embedded domain setting. This opens the new modeling possibility that neither a scan vector nor a layer of material needs to conform to the discretization of the finite element mesh but can form only a fraction within the discretization of the field- and state variables.  相似文献   

5.
This study investigates the use of a polarization rotation reflective surface (PRRS) to construct a wideband, wide‐beam, low‐profile circularly polarized (CP) patch antenna. The device is composed of a feeding monopole antenna and a novel PRRS‐based dual‐patch artificial magnetic conductor (AMC) cell structure. The PRRS has two polarization rotation (PR) frequency points, generated by properly adjusting the width between square and L‐shaped metallic patches. A large PR band of 35.5% (5.1‐7.3 GHz) was achieved by combining two adjacent PR frequency points. The PRRS‐based patch antenna impedance bandwidth was measured to be 28.6% (5.1‐6.35 GHz), with a 3 dB axial ratio (AR) bandwidth of 21.8% (4.8‐6.4 GHz) and a profile of 0.045λ0. Additionally, the proposed antenna exhibited the largest AR beamwidth (to our knowledge) of 175° and 128° in the xoz and yoz planes, respectively. It also produced a high broadside gain of 6.7 dBic within the operational bandwidth.  相似文献   

6.
This paper considers the problem of scheduling a set of jobs subject to arbitrary release dates and sequence-dependent setup times on a single machine with the objective of minimizing the maximum completion of all the jobs, or makespan. This problem is often found in manufacturing processes such as painting and metalworking. A new mixed integer linear program (MILP) is firstly proposed. Because the problem is known to be NP-hard, a beam search heuristic is developed. Computational experiments are carried out using a well-known set of instances from the literature. Our results show that the proposed heuristic is effective in finding high quality solutions at low computational cost.  相似文献   

7.
8.
Distance education courses must cope with the difficulties imposed by delivering a class at a distance. As most courses only emphasize the cognitive aspects of the class and neglect the course’s effect on the students, this gives no help for reaching the affective domain teaching goals. Especially for younger students, in distance education, when younger students are out of the sight of teachers, they could easily be distracted by the environment around them. This research outlines a synchronous discussion procedure with reinforcement mechanism designed for elementary school students to integrate the affective aspects of teaching into distance education within a class period. The mechanism allows teachers to understand students’ attitudes within the class and provides instant feedback to the teacher. Learners can also get information about their attitudes and help to reach the affective domain teaching goals of the courses. This mechanism was implemented and investigated. Comparative assessments were made by administering interviews and questionnaires to elementary school students. The results show that the procedure can supervise learners and help them reach the response stage of the affective domain teaching goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号