首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rare‐earth vanadates of the form REVO4 (RE = Y, La, Gd, and Lu) doped by Yb3+/Ho3+, Yb3+/Er3+, or Yb3+/Tm3+ lanthanide ions were successfully synthesized using the sol–gel method and annealing at 600°C in an air atmosphere. The structure and morphology of the prepared nanocrystals were investigated by X‐ray diffraction, thermogravimetric analysis, transmission electron microscopy, and energy‐dispersive X‐ray spectroscopy. All prepared materials were homogenous and had nanosized dimensions. Their elemental compositions were confirmed by optical emission spectrometry. Spectroscopic analysis of the materials was carried out by measuring excitation and emission spectra, luminescence decays, and dependence between the intensity of the luminescence and the laser energy. Following effective excitation by NIR radiation, Ln3+ co‐doped vanadate matrices exhibited a strong up‐conversion (UC) luminescence. Differences in spectroscopic properties between monoclinic LaVO4 and tetragonal YVO4, GdVO4, or LuVO4 doped by Ln3+ ions were observed, indicating the influence of the crystal structure on the UC emission. Drawing conclusions from these spectroscopic investigations, the UC mechanisms were proposed, including energy‐transfer processes between Yb3+ ions and emitting ions.  相似文献   

2.
A kind of Dy-doped yttrium aluminum garnet (YAG) transparent ceramic for ultraviolet excited single-phase white light-emitting phosphor was investigated, which has high-quantum efficiency (45%). The temperature field of Dy:YAG transparent ceramic was calculated by steady-state thermal simulation. Moreover, by combining with 365 nm light-emitting diodes (LED) chip directly, the Commission Internationale de l’Éclairage coordinate (x = 0.33, y = 0.35) is close to the standard equal energy white light illumination. The Dy:YAG transparent ceramic, possessing of good optical and thermal properties, is promising for applications in high-power LEDs devices.  相似文献   

3.
The nanocrystalline single-phase Er3+-doped Yb3Ga5O12 garnets have been prepared by the sol-gel combustion technique with a crystallite size of ≈30 nm. The presence of Yb3+ in garnet hosts allows their efficient excitation at the ≈977 nm wavelength. The Er3+ doping of Yb3Ga5O12 garnet host results in deep red Er3+: 4F9/2 → 4I15/2 upconversion photoluminescence (UCPL) emission. The dominance of the red UCPL emission over the green Er3+: 4F7/2/2H11/2/4S3/2 → 4I15/2 component was investigated using the measurement of the steady-state and time-dependent Er3+ and Yb3+ emission spectra in combination with the power-dependent UCPL emission intensity. The proposed upconversion mechanism is discussed in terms of the Er3+ → Yb3+ energy back transfer process as well as Yb3+(Er3+) → Er3+ energy transfer and Er3+ ↔ Er3+ cross-relaxation processes. The studied Er3+-doped Yb3Ga5O12 garnet may be utilized as a red upconversion emitting phosphor.  相似文献   

4.
Er3+-doped strontium gadolinium gallium garnet (SrGdGa3O7) single-crystal was grown by Czochralski method. The Er3+ concentration in the crystal was determined as 4.2 × 1021 ions/cm3 by inductively coupled plasma atomic absorption spectroscopy. Refractive index of the crystal was measured at the wavelengths of 633, 1311 and 1553 nm by prism coupling technique. The results show that the crystal is a positive uniaxial crystal with a birefringence of ~0.01, and the Sellmeier equation reported previously for the crystal doped with Nd3+ is also valid for the one doped with Er3+. Unpolarized absorption spectrum of the crystal was measured at room temperature and the Er3+ absorption cross-section spectrum was calibrated from it. The Er3+ spectroscopic properties were studied by Judd-Ofelt theory. Some fundamental spectroscopic parameters were obtained that include absorption coefficient and cross-section spectral distributions, electronic transition oscillator strength, Judd-Ofelt parameters, fluorescence branch ratio, transition probability, radiative and fluorescence lifetimes, and quantum efficiency.  相似文献   

5.
采用高温固相合成法在还原气氛中制备了(Lu1–xTbx)3Ga5O12荧光粉,研究了其晶体结构、光致发光性能以及Tb3+掺杂浓度对荧光粉性能的影响规律与机制。研究表明:荧光粉具有石榴石型晶体结构,当x增加时,晶格膨胀。荧光粉的激发光谱由归属于Tb3+的4f 8→4f 7 5d1跃迁的A、B两个宽激发带以及归属于4f 8→4f 8跃迁的一些窄谱峰构成;随x的增加,A、B带发生红移,带间距缩小。在紫外光激发下,荧光粉发射绿光;发射光谱对应于Tb3+的5D4→7FJ和5D3→7FJ跃迁,其中5D4→7F5跃迁发射最强。5D4→7FJ各跃迁发射的浓度猝灭以交互作用为主,猝灭浓度xm=0.08。与5D4→7FJ跃迁相比,5D3→7FJ猝灭浓度低,猝灭机制以电偶极–电偶极相互作用下交叉弛豫为主。  相似文献   

6.
A series of Mg2+/Er3+‐codoped congruent LiNbO3 crystals were grown by Czochralski method from the growth melts containing 0.5 mol% Er2O3 while varied MgO content from 0.0 to 7.0 mol%. The unclamped electro‐optic coefficients γ13 and γ33 of these crystals were measured by Mach–Zehnder interferometry. Two different voltage‐applying schemes were adopted: one is the DC voltage applied to the crystal via Al films coated onto crystal surfaces and another is via a pair of external Cu slab electrodes. The coefficients measured by the two schemes show similar strong dependence on Mg2+ concentration. The dependence is non‐monotonous, dramatic, and unusual, and reveals the features of two Mg2+ concentration thresholds of optical damage: one in the Mg2+ concentration range of 1.2–2.0 mol% (in crystal) and another in 4.5–5.0 mol%. Around the threshold the electro‐optic coefficient decreases abruptly at first and then recovers quickly, and the coefficient drops by >20% (12%) at the first (second) threshold, which exceeds the error 3% considerably. The dramatic behavior is qualitatively explained on the basis of the EO coefficient model of LiNbO3 and the defect structure model for Mg2+‐doped LiNbO3.  相似文献   

7.
We demonstrate that self-propagating sintering reaction could be activated and dramatically enhanced by laser excitation of ion dopants in the solid-state reactants. Near-resonant laser absorption and subsequent nonradiative decays make the solid-state reactants be sintered efficiently while ionic excitations catalyze self-propagating solid-state reactions. As a prototype demo, we synthesized white light upconversion phosphors NaYbF4:Pr3+/Gd3+. A continuous-wave laser at 980 nm was used to populate Yb3+ ions in YbF3 to excited level, which react with NaF to preform NaYbF4 nuclei. The preformed nuclei enhanced laser excitation and energy transfer to those ions that could not be directly excited by the pump laser and thus enabled self-propagating solid-state sintering synthesis of NaYbF4 microcrystals at quite low laser powers. Laser excitation of Yb3+ ions could also benefit facile rare-earth ion doping through activated self-propagating reactions. Gd3+ and Pr3+ ions were doped in NaYbF4 by simply adding Gd3+ and Pr3+ ionic oxides or fluorides in the raw materials. In addition, Gd3+ ions doping in F anions ambient could transform the NaYbF4 microcrystal phase from cubic to hexagonal and tune upconversion photoluminescence. This synthetic method can be widely applied to synthesize many other solid-state compounds, perovskite solar cells, photocatalysts, solid oxide fuel cells, and so forth.  相似文献   

8.
采用提拉法生长了掺10%(摩尔分数,下同)Yb3+、掺Er3+分别为3%,5%和10%的Er3+:Yb3+:Gd3Ga5O12(Er:Yb:GGG)晶体。分析了Er:Yb:GGG晶体的结构和荧光光谱。结果表明:所生长的晶体属于立方晶系,Ia3d空间群。在980nm激光激发下,晶体样品在1000~1600nm范围内存在3个较强的发射带,相应的发射峰分别位于1030,1471nm和1534nm附近。由于Yb3+对Er3+的敏化作用,随着Er3+掺量的递增,1030nm处的发射峰强度逐渐减弱,1471nm和1534nm处的发射峰强度逐渐增强。计算了各个发射峰的受激发射截面积,铒和镱离子掺量为10%的晶体(10%Er:10%Yb:GGG)的受激发射截面高达2.0073×10–18cm2,可以产生较强的1534nm人眼安全波段的激光。  相似文献   

9.
We have developed a new broadband-sensitive photon upconversion (UC) material that can be used for transparent ceramic plates mounted on the rear faces of crystalline silicon solar cells. We selected the host material of a cubic crystal structure codoped with Er3+ and Ni2+ so that the Ni2+ dopants were fully activated to sensitize the Er3+ emitters. In garnet-type Ca3Ga2Ge3O12 with additional codopants of Nb5+ and Li+ for charge compensation, all the Ni2+ dopants occupied the six-coordinated Ga3+ sites, leading to highly efficient energy transfer from the Ni2+ to the Er3+. Formation of four-coordinated Ni2+ that quenches the UC emission of the Er3+ was prevented, because Ni2+ cannot substitute the four-coordinated Ge4+ much smaller than Ni2+. Consequently, energy dissipation from the Er3+ to the Ni2+ was well reduced compared with the previously developed Gd3Ga5O12:Er,Ni,Nb in which the Ni2+ dopants partially occupied the four-coordinated Ga3+ sites. Additional introduction of Y3+ and Li+ enhanced optical transitions and improved the UC performance, owing to more enhanced lattice distortion, along with eliminating different phases. The optimal composition (Ca0.6Er0.1Y0.1Li0.2)3(Ga0.98Ni0.01Nb0.01)2Ge3O12 exhibited a broadband sensitivity ranging from 1.1 μm (the absorption edge of silicon) to 1.6 μm for the UC emission at 0.98 μm.  相似文献   

10.
Layered composite ceramics have wide application in solid-state lasers. However, the photothermal effect in the layered ceramics has not been clarified, due to the interface effect between layers. In this work, the model of photon propagation and thermal distribution in the Gd3Al3Ga2O12:Ce3+/Y3Al5O12:Cr3+ layered ceramics are established. The property of photon absorption, reflection, transmission, and thermal distribution are studied by combining the Monte Carlo method and the convolution method. It is found that the photon absorption distribution and thermal distribution of this layered ceramics show the gradient change. Furthermore, this change is strongly dependent on the type, beam width, and power of laser. The temperature of layered ceramics induced by Gaussian beam is higher than that induced by flat circular beam. This work provides a useful research method for the design of layered ceramic materials with excellent scintillation performance.  相似文献   

11.
采用提拉法生长了Nd:Gd3Ga3O12(Nd:GGG)晶体。切割后的样品经过端面抛光,测试了荧光光谱、吸收光谱和激光性能。荧光光谱表明:晶体的最强的荧光发射峰位于1062nm,是Nd^3+的4^F3/2-4^I11/2谱项导致的荧光发射。由吸收光谱发现:Nd:GGG晶体的最强吸收峰位于808nm,表明该晶体适合于激光二极管泵浦.并且吸收峰强度随掺杂离子浓度的增加而增加。激光性能测试结果表明:激光二极管泵浦时光-光转换效率为33.+8%,斜效率为57.8%。  相似文献   

12.
Fine-grained BaTiO3-based ceramics with an average grain size of 120−140 nm were prepared by a chemical coating method. The effect of Ho-Dy concentration on the microstructure, dielectric properties, and reliability of BaTiO3-based nanoceramics was investigated. Results showed that appropriate doping contents of Ho and Dy provide the highest dielectric constant of 2323 at room temperature and the temperature stability satisfied EIA X7R specification. Higher doping concentration specimens exhibit lower dielectric constant but gentler temperature stability, indicating thicker grain shells. The failure time under the highly accelerated lifetime test increased along with the increase of Ho-Dy and was consistent with the impedance analysis results. Doping elements are mainly distributed in grain shells, leading to an increase of resistance and activation energy. The compositions for the highest dielectric constant and best reliability were not the same, providing support for the composition design of dielectric layer material for different BME-MLCC applications.  相似文献   

13.
We report a study of composite scintillating ceramics based on coupled layers of two different garnets, namely Ce-doped gadolinium gallium aluminium (GGAG:Ce) and Pr-doped yttrium aluminium (YAG:Pr), fabricated by hot isostatic pressing. Two samples were prepared, with different GGAG:Ce layer thickness, 120 µm and 690 µm respectively, but with a comparable overall thickness of 1.4 mm. The key finding is that the material architecture strongly determines the scintillation response. The radioluminescence is that expected from the irradiated material when a thick layer of ceramic is exposed to X-rays. Conversely, exposing a thin layer allows a non-null probability —about 0.3% for 120 µm of GGAG— of finding an X-ray photon in the underlying layer, and thus radioluminescence from both materials is recorded. We believe these results can extend the potential of layered optical ceramics for advanced devices, such as energy- and direction-sensitive X-ray detectors.  相似文献   

14.
Novel dual valence Eu-doped Ca4ZrGe3O12 (CZGO) phosphors were successfully fabricated in air atmosphere through a solid-state route. Their crystal structure, photoluminescence properties as well as thermal quenching performance were investigated systematically. The spectra show that part of Eu3+ were reduced to Eu2+ and the mechanism is interpreted by the charge compensation. By altering Eu concentration, multi-color luminescence covering from blue to red is realized when irradiated by 370 nm light, which perfectly matches with the near ultraviolet (NUV) light-emitting diode (LED) chips. More importantly, under NUV excitation, luminescent intensities are almost unchanged even up to 423 K. And chromaticity exhibits only a tiny shift with growing temperature. Such suitable luminescent spectra and superior thermal stability indicate that CZGO:Eu phosphors are promising candidates for blue-red components in NUV pumped W-LEDs. Finally, the fabricated W-LED based on the combination of CZGO:Eu phosphors, Ba2SiO4:Eu2+ and a 365 nm NUV-LED chip gives a high color rendering index, a low correlated color temperature and suitable CIE chromaticity coordinates.  相似文献   

15.
We investigated the effect of Gd3+ and Ga3+ on Yb:YAG emission at cryogenic temperatures by preparing ceramic pellets by solid state reaction method with different Gd3+ and Ga3+ content. Incorporation of Gd3+ shows only a small effect on spectral broadening whereas incorporation of Ga3+ in Yb:YAG results in significant broadening. Such an inhomogeneous broadening is due to the replacement of larger Ga3+ ion in two different cationic sites of Al3+ which causes a change in local crystal field on the Yb3+ site.  相似文献   

16.
An ever increasing demand for white light-emitting diodes (W-LEDs) results in the gradual growth of research on functionalized luminescent glasses. In this paper, single-composition tunable white-emitting Eu2+-Tb3+-Eu3+ tri-activated glasses were synthesized by melt quenching method without additional reducing atmosphere. The coexistence of Eu2+ and Eu3+ was confirmed by ultraviolet-visible transmission spectra, photoluminescent spectra, fluorescence decay curves, and X-ray photoelectron spectroscopy. Tb3+ can act as bridge to connect Eu2+-Eu3+ luminescent centers by energy transfer. Tone-tunable white light can be achieved by coupling the emission centered at 412, 541, and 612 nm contributed from Eu2+, Tb3+, and Eu3+, respectively. By adjusting the relative content of Eu2+/Tb3+/Eu3+, ideal chromaticity coordinates of (0.33, 0.33) can be achieved under excitation of ultraviolet light. High thermal stability and tiny chromaticity shift were exhibited in samples. These results suggest that Eu2+-Tb3+-Eu3+ tri-activated glasses have great potential application in ultraviolet-driven W-LEDs.  相似文献   

17.
Pr3+, Gd3+ co-doped SrF2 transparent ceramic, as the potential material for visible luminescent applications, was prepared by hot-pressing of precursor nanopowders. The microstructure, phase compositions, and in-line transmittance, as well as the photoluminescence properties were investigated systematically. Highly optical quality Pr,Gd:SrF2 transparent ceramic with nearly pore-free microstructure was obtained at 800°C for 1.5 hours. The average in-line transmittance of the x at.% Pr, 6 at.% Gd:SrF2 (x = 0.2, 0.5, 1.0, 2.0) transparent ceramics reached to 87.3 % in the infrared region. The photoluminescence spectra presented intense visible light emissions under the excitation of 444 nm, the main intrinsic emission bands located at 483 and 605 nm, which were attributed to the transitions of Pr3+: 3P0 → 3H4 and 1D2 → 3H4, respectively. With the co-doping of Gd3+ ions, the emission intensity of the Pr:SrF2 transparent ceramic was greatly enhanced. All the emission bands of x at.% Pr, 6 at.% Gd:SrF2 transparent ceramics exhibited the highest luminescence intensity with the 1.0 at.% Pr3+ doping concentrations, whereas the lifetimes decreased dramatically with the Pr3+ doping contents increasing from 0.2 to 2.0 at.% due to its intense concentration quenching effect. The 1 at.% Pr, 6 at.% Gd:SrF2 transparent ceramic is a promising material for visible luminescent device applications.  相似文献   

18.
Glasses with ultra-wideband near-infrared emission and superior irradiation resistance are important for the potential applications in optical communications under harsh environments. Here, transparent 35La2O3-(65-x)Ga2O3-xTa2O5 (LGT) and Er3+/Tm3+/Pr3+ tri-doped LGT glasses are fabricated using the levitation method. LGT glasses exhibit a wide glass-formation region, low largest vibration energy, high refractive indices, and excellent mechanical properties. Additionally, Er3+/Tm3+/Pr3+ tri-doped LGT samples with varying Pr3+ contents are characterized by possessing good thermal stability (Tg>849°C), wide transparent optical window, strong radiation resistance, excellent compatibility between low wavelength dispersion (vd>31.2), and large refractive index (nd>2.048). By optimizing the doping content of Er3+, Tm3+, and Pr3+ in an appropriate ratio, the ultra-wideband near-infrared luminescence ranging from 1250 to 1640 nm (FWHM = 251 nm) has been acquired under 808 nm pumping. Furthermore, decay curves are measured to reveal the fluorescence dynamics, and then the related emission mechanism is elaborated systematically. Meanwhile, the effects of gamma irradiation doses on microstructure, transmittance spectra, and fluorescence characteristics are studied. This work may offer a valuable reference for doping optimization and new design strategy of multifunctional materials.  相似文献   

19.
Sr4‐xSi3O8Cl4:xEu3+ (SSOC:Eu3+) phosphors were successfully synthesized by hydrothermal method. The crystallization of this phosphor was analyzed by means of X‐ray diffraction patterns. The size and morphology were recorded using SEM patterns of samples. And the PLE and PL spectra were characterized by a PL spectrophotometer. Excited by 394 nm UV light, the intense red emission is recognized in SSOC:Eu3+ phosphor and the main emission peak located at 620 nm. The influences of Eu3+ concentration, pH value of reaction solution, and charge compensator on PL spectra of SSOC:Eu3+ phosphors were investigated. The results revealed that this red phosphor had potential applications for white LEDs.  相似文献   

20.
采用溶胶-凝胶法合成了Yb:GGG多晶料.以XRD分析方法对合成料的前驱体及烧成的粉体的相结构进行了研究,XRD分析结果表明,950 ℃煅烧的粉体已是Yb:GGG纯相.采用提拉法,通过设计合理而稳定的温场、选择最佳工艺参数等生长了Yb:GGG晶体.荧光光谱测试结果表明,Yb:GGG晶体主要发射峰位于1030 nm,该荧光是由Yb3+激发态2F5/2向基态2F7/2能级跃迁产生的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号