共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
在遥感图像中,目标往往位于复杂的地物背景中,包括不同类型的植被、土地覆盖、建筑物等。上述复杂的地物背景对目标识别造成了困难。为了精准识别遥感图像目标,提出一种卷积神经网络下遥感图像目标识别算法。将暗通道原理和双边滤波算法有效结合,对遥感图像展开增强处理。统计分析遥感图像目标尺度范围,通过训练和测试卷积神经网络,得到最佳目标感兴趣区域尺度。确定目标感兴趣区域最佳尺度后,构建基于卷积神经网络的遥感图像目标识别架构,完成遥感图像目标识别。通过实验分析证明,采用所提算法可以有效提升遥感图像增强效果,具有较好的遥感图像目标识别性能。 相似文献
3.
4.
人脸表情识别已成为人工智能领域的重要研究课题,但传统的卷积神经网络需要庞大的计算资源使得其应用受限,而二值化卷积神经网络可通过快速与或运算代替原本的浮点乘法运算,大大降低了算法对计算资源的需求。论文提出了一种基于数据增强和二值化卷积神经网络的人脸表情识别算法,通过均值估计,在FER2013数据集上达到了66.15%的识别率,超越了部分基于浮点乘积运算的卷积网络,为表情识别算法移植到小型设备中提供了可能。 相似文献
5.
6.
针对多角度下车辆出现一定的尺度变化和形变导致很难被准确识别的问题,提出基于多尺度双线性卷积神经网络(MS-B-CNN)的车型精细识别模型。首先,对双线性卷积神经网络(B-CNN)算法进行改进,提出MS-B-CNN算法对不同卷积层的特征进行了多尺度融合,以提高特征表达能力;此外,还采用基于中心损失函数与Softmax损失函数联合学习的策略,在Softmax损失函数基础上分别对训练集每个类别在特征空间维护一个类中心,在训练过程中新增加样本时,网络会约束样本的分类中心距离,以提高多角度情况下的车型识别的能力。实验结果显示,该车型识别模型在CompCars数据集上的正确率达到了93.63%,验证了模型在多角度情况下的准确性和鲁棒性。 相似文献
7.
密集连接卷积神经网络(DenseNet)是一种新型深度卷积神经网络架构,通过建立不同层间的连接关系,来确保网络层与层间最大程度的信息传输。在文本远程监督关系抽取任务中,针对现有神经网络方法使用浅层网络提取特征的局限,设计了一种基于密集连接方式的深度卷积神经网络模型。该模型采用五层卷积神经网络构成的密集连接模块和最大池化层作为句子编码器,通过合并不同层次的词法、句法和语义特征,来帮助网络学习特征,从而获取输入语句更丰富的语义信息,同时减轻深度神经网络的梯度消失现象,使得网络对自然语言的表征能力更强。模型在NYT-Freebase数据集上的平均准确率达到了82.5%,PR曲线面积达到了0.43。实验结果表明,该模型能够有效利用特征,并提高远程监督关系抽取的准确率。 相似文献
8.
9.
在传统静态表情识别研究基础上,提出一种简单的人脸裁剪方法,再用浅层卷积神经网络进一步提取特征并进行表情识别。以CK+和JAFFE为实验数据集,进行预处理效果对比实验、数据增强实验、单种表情识别实验和跨数据集六分类实验。结果表明,针对数据量较少的情况,提出的表情识别方法效果明显且鲁棒性更优。 相似文献
10.
秦晨曦于洋 《电脑编程技巧与维护》2023,(2):153-155
为了尽可能降低图像目标的重复识别概率、错误率,提出了利用卷积神经网络算法对图像识别信息的重复识别进行分析的实验研究。遮挡目标的数据集经过图像增强后输入给卷积层卷积,初始化得到的图像数据经过卷积层卷积后,提交至池化层进行进一步处理,提取图像特征数据,将提取的图像特征数据经过池化层处理后进行压缩,提取遮挡目标的关键特征信息。最后经过TensorFlow深度机器学习框架的实验测试,进一步证明使用注意模块后可以通过引导网络去关注被遮挡目标图像上的可视细节部分,并完善对遮挡目标图像检测进行验证研究。 相似文献
11.
针对遥感影像场景中空间信息丰富以及冗余的地理特征会对网络训练时造成干扰等问题,提出一种采用特征重校准融合密集神经网络的遥感影像场景分类方法。通过缩聚与激发机制建立SE block,将SE block与其多尺度分支嵌入DenseNet-121中进行特征重校准,利用DenseNet中密集连接方式加强信息流的传递。该方法使得整体模型获得全局感受野的稳健特征表示,减少遥感场景特征的冗余映射。通过在两个公开遥感影像数据集UCMercedLandUse和SIRI-WHU中进行实验,分类精度分别高达97.7%和98.9%,验证了该方法的有效性。 相似文献
12.
提出一种高效的人体动作识别方法。通过帧间差分法将深度序列的三视图转化为深度运动轮廓序列(DMOS),然后利用时空金字塔对DMOS进行时间维和空间维细分,将细分后得到的空间网格的局部方向梯度直方图(HOG)进行特征融合,并使用线性SVM分类。最后采用MSR Action 3D数据集对提出的算法在不同时空金字塔参数下的识别率和处理速度进行了评估,结果表明该方法在同类算法中具有更高的识别率。 相似文献
13.
14.
交通标志由外部轮廓和内部指示符号组成,HOG特征可较好描述图像轮廓但易受噪声影响,而LBP特征对图像细节刻画好,提出基于分块HOG-LBP自适应融合特征的交通标志识别方法。通过分块计算梯度直方图得到的权重系数,来判断该块是属于轮廓还是内部指示,对前者选择HOG权重大,后者选择LBP特征权重大,将自适应串行融合后的特征送入支持向量机识别。仿真实验结果表明,该算法对标准交通标志识别率可达到100%,对含模糊、残缺、遮挡等非标准交通标志也达到了76%。 相似文献
15.
手掌静脉识别是一种新兴的生物特征识别技术,随着时代的进步,在各种安全领域中起着越来越重要的影响和应用。提出了一种改进的手掌静脉图像预处理方法,采用对像素灰度值映射来增强图像中的静脉纹理以去除其他干扰。针对手掌静脉纹理的特征提取和识别,提出了一种基于方向梯度直方图(HOG)与改进的阈值支持向量机(T-SVM)的算法,以更好适应手掌静脉识别的特点。通过大量实验证明,该方法不仅可以较为迅速地进行身份识别,而且达到了较高的识别率。 相似文献
16.
验证码今已广泛应用在各个领域,常见的英文字母与数字组合的验证码自动识别准确率已达到较高的水准,而汉字因其字符复杂,用传统方法进行自动识别难度很大。提出一种基于卷积神经网络的验证码自动识别方法来提高字符的识别准确率。采用Keras卷积神经网络框架,设计多层卷积来提取深层次图像信息,分别对汉字验证码和字母数字验证码进行识别,以提高模型的泛化性。实验结果表明用该方法汉字验证码的单字识别率已达到99.4%;传统四字符字母数字验证码的识别率最高达到99.3%。这一结果表明深度神经网络对验证码复杂结构的感知能力很强大,通过对比实验发现Keras框架在验证码识别领域有较好效果。 相似文献
17.
基于HOG的酿酒葡萄叶检测 总被引:1,自引:0,他引:1
在酿酒葡萄生长状态与病虫害自动监测中,需要在图像中检测出葡萄叶片,通过提取葡萄叶片图像的方向梯度直方图(HOG)特征投入到支持向量机(SVM)分类器中以实现对葡萄叶片的识别;结合多尺度目标定位和均值漂移算法还可以自动确定图像中葡萄叶片的位置。实验结果表明,使用线性核函数训练后的分类器对葡萄叶片和四种常见杂草的识别率达95.5%。该方法对光照和环境变化有较好的鲁棒性,自然条件下成像的叶片图像的葡萄叶片检出率达到了80%以上。 相似文献
18.
针对单幅图片中人体姿态的估计问题,在图结构模型的基础上提出了一种新的人体姿态估计算法。算法提出了一个新的部位观测模型和一种新的减小部位状态空间的方法:(1)对人体不同部位采用不同尺寸的细胞单元计算HOG特征,并利用线性SVM进行分类,从而提出一种新的部位观测模型;(2)利用人体部位定位的先验分布确定部位定位区域,然后通过邻域归并和设置与部位模板的匹配度阈值进一步减小状态空间,从而提出了一种减小部位状态空间的方法。仿真实验结果表明所提算法与传统算法相比更加有效。 相似文献
19.
基于卷积神经网络的车牌字符识别 总被引:1,自引:0,他引:1
车牌字符识别是智能车牌识别系统中的重要组成部分。针对车牌字符类别多、背景复杂影响正确识别率的问题,提出了一种基于卷积神经网络(CNN)的车牌字符识别方法。首先对车牌字符图像进行大小归一化、去噪、二值化、细化、字符区域居中等预处理,去除复杂背景,得到简单的字符形状结构;然后,利用所提出的CNN模型对预处理后的车牌字符集进行训练、识别。实验结果表明,所提方法能够达到99.96%的正确识别率,优于其他三种对比方法。说明所提出的CNN方法对车牌字符具有很好的识别性能,能满足实际应用需求。 相似文献
20.
为了提高人脸识别在复杂条件下的识别率,提出一种基于自适应加权梯度方向直方图特征(AW-HOG)的人脸识别方法。该方法首先将人脸图像分成均匀子块,并利用HOG描述算子提取分块人脸特征,根据各分块对识别的贡献率自适应地计算各分块的权重,然后融合权重系数以及各分块的HOG特征,形成AW-HOG特征并采用主成分分析(PCA)算法进行降维,最后利用支持向量机(SVM)进行分类识别。在Yale B 以及AR标准人脸库上的实验结果表明,提出的人脸识别方法在识别率上优于传统算法且对光照具有较强的鲁棒性。 相似文献