首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
为了提高三轴加速度计的测量精度,采用一种基于椭球拟合的方法对传感器进行误差补偿,首先建立传感器误差数学模型,然后推导出椭球的二次曲面一般方程,根据最佳椭球拟合条件,解算出误差补偿方程.经过实验证明,该算法把三轴加速度计测量精度控制在0.4%以内.  相似文献   

2.
在三轴磁传感器测量误差校正方面,传统的椭球拟合算法只能实现磁场总量的校正,没有给出明确的测量误差模型参数求解方法,无法保证磁场分量校正效果。针对此种情况,提出三轴磁传感器分量误差的两步校正方法。第一步,建立三轴磁传感器测量误差模型,利用椭球拟合算法求解中间参数;第二步,对中间参数进行解耦,得到实际三轴磁传感器测量误差模型参数,从而实现三轴磁传感器的磁场总量和分量校正。仿真结果表明该方法能够精确求解出三轴磁传感器测量误差模型参数,从而有效实现三轴磁传感器分量误差校正。实验结果验证了该方法的有效性。  相似文献   

3.
椭球拟合的电子罗盘磁差补偿   总被引:1,自引:0,他引:1  
对电子罗盘磁差补偿的椭球拟合校准法进行深入研究,并分解为硬磁、软磁、比例系数校准和未对准误差校准,分别进行仿真分析,直观给出各部分磁差对拟合后的椭球拟合影响.与工业级高精度HMR3300型电子指南针进行对比实验,给出基于HMC5883L磁阻传感器的自制电子罗盘经过椭球拟合校准后的导航精度.  相似文献   

4.
对于航姿参考系统中磁航向传感器的输出精度来说,误差环境对其精确度的影响起着很大的作用.为了校正磁航向传感器的误差,提出了一种基于改进最小二乘法的椭球拟合法,对三轴磁传感器误差做快速标定补偿.首先,对磁航向传感器的误差产生机理进行有效分析,然后,针对分析结果建立误差椭球模型,推导出误差系数的解算公式,利用改进的椭球拟合方法对磁航向传感器进行标定和补偿.实验结果表明,改进的椭球拟合方法能够正确快速的标定补偿磁航向传感器的零偏误差、非正交误差、灵敏度误差,在解决当前磁传感器标定补偿计算量大、操作时间长、标定设备要求高等问题上达到了预期的效果,具有补偿效果显著,简单易行等特点.  相似文献   

5.
针对工作环境下的MEMS磁力计易受磁场干扰,且传统误差补偿速度慢、需要外部信息辅助而影响地磁信息获取时效性和精度的问题,提出一种基于椭球拟合的磁力计误差修正算法。建立基于刻度因子误差、非正交误差、零偏误差和软硬磁特性的磁力计误差模型,采用最小二乘平差法估计椭球拟合算法中的椭球方程系数,得到校准后的磁场强度值。实验结果表明,经过论文提出的椭球拟合算法校正后的磁场强度波动幅度明显小于磁力计测量的原始磁场强度,能够有效降低磁力计测量误差。  相似文献   

6.
该方法以自制的小型三轴磁通门航向系统为基础,加入MEMS三轴加速度计,形成了三轴电子罗盘的硬件结构。针对电子罗盘的罗差容易受到环境影响的特点,研究了自动误差补偿方法。首先对加速度计进行校准,其次采用基于椭球拟合的算法进行磁通门罗差的自动补偿,在剩余误差分析的基础上,利用加速度计的输出用递推最小二乘的方法对剩余误差进行了自动补偿。室温下实验结果表明该方法不仅方便有效,而且电子罗盘的误差从15°降低至2°内,在大倾角(60°)情况下也能保持较好精度。  相似文献   

7.
磁航向传感器使用中的误差补偿   总被引:13,自引:0,他引:13  
袁智荣 《测控技术》2001,20(1):58-59
通过对磁航向测量误差形成原因的分析,提出了一套快速有效的补偿办法,在工程应用中得到了满意的效果。  相似文献   

8.
三轴磁敏传感器误差分析与校正研究   总被引:1,自引:0,他引:1  
三轴磁敏传感器被广泛应用于空间磁场测量。但由于非正交性、各通道定标比例系数的不一致性以及各通道零点偏置,三轴磁敏传感器不同的姿态会导致测量结果上的差异,即存在转向误差。首先对三轴磁敏传感器转向误差进行了细致的分析与计算,提出了一种轴间正交化、调整灵敏度和减小零点漂移的转向误差模型。然后,建立了与之对应的神经网络结构以实现对转向误差模型参数的智能辨识。最后,通过建立的误差模型实现了对转向误差的自校正。实验结果表明,所提的自校正方法能有效改善三轴磁敏传感器的性能。  相似文献   

9.
针对三轴磁传感器的转向差校准,本文提出基于高斯过程回归的误差补偿方法,在均匀磁场环境下多次旋转得到磁测数据,通过高斯过程回归拟合传感器磁测数据与真实磁场之间的映射关系,完成三轴磁传感器的校正.仿真和实验结果均证明该算法对小样本数据具有良好的校正效果,同时分析对比了几种常见核函数对校正性能的影响,进一步验证高斯过程回归法对磁传感器校正的有效性,将磁测数据的最大峰峰值误差从1168.44 nT降低到2.75 nT,显著降低了三轴磁传感器的测量误差.  相似文献   

10.
针对三轴地磁传感器的传统误差补偿方法操作繁琐、依赖外界仪器,无法应用于车辆地磁导航系统的缺点,提出了一种基于无迹卡尔曼滤波的三轴地磁传感器误差在线补偿方法。分析地磁传感器误差产生机理,得到了适用于车辆导航系统的地磁传感器误差模型。设计无迹卡尔曼滤波器估计模型中未知参数,从而实现误差的在线补偿。实验结果表明:所提方法有效可行,补偿后的精度在0. 5°以内,补偿效果较好。  相似文献   

11.
针对经纬仪水平度传感器存在安装误差的问题,分析了竖轴倾斜误差补偿中水平度传感器安装误差存在形式;推导了传感器安装误差对水平度检测结果的影响公式,在此基础上研究了安装误差对传感器测量值的影响规律,在绕竖轴的旋转平面内的安装误差,在经过粗调平后,对最终检测结果的影响可以忽略不计,在传感器所在铅锤面内的安装误差对测量值的影响在对径位置上相同;因此设计了相应的传感器安装误差补偿方法,从而修正了经纬仪水平度传感器安装误差对水平度检测的影响。  相似文献   

12.
王薇  孙林峰  李丽锦 《测控技术》2018,37(11):86-89
根据航向传感器在无人机上的安装位置,介绍了两种航向补偿算法,即航向传感器水平安装时改进的霍尼韦尔补偿算法和航向传感器非水平安装时改进的椭球拟合补偿算法。根据这两种算法,进行了无人机的地面静止补偿实验和飞行试验。通过输出的航向传感器数据与高精度惯导数据进行对比,验证了不同安装位置采用的不同的补偿算法都可实现航向的高精度补偿。  相似文献   

13.
一种星敏感器安装误差标定模型仿真研究   总被引:2,自引:0,他引:2  
安装误差对星敏感器姿态确定精度有严重影响,需对其进行有效的标定与补偿。为此提出了一种以星敏感器量测信息为依据的安装误差快速标定模型和方法。该方法通过分析星敏感器输出的姿态信息与安装误差之间耦合关系,建立四位置下星敏感器测量信息及相对位置关系与安装误差的观测模型,在此基础上推导了安装误差标定及补偿算法。仿真表明,该法能够实现对星敏感器安装误差的高精度标定,可有效提高星光天文定姿的精度,对星敏感器的高精度应用具有重要的理论意义和实际参考价值。  相似文献   

14.
针对硬磁干扰和软磁干扰条件下的磁罗盘误差补偿问题,对传统的误差椭圆假设模型进行改进,提出一种基于椭圆旋转的磁传感器误差补偿算法。分析磁罗盘误差产生的因素,并建立椭圆旋转数学模型。采用非线性最小二乘拟合算法推导出误差补偿参数公式。利用Honeywell双轴磁阻传感器的测量值和椭圆旋转拟合的算法,对两轴磁传感器进行测试标定与误差补偿。实验结果表明,椭圆旋转算法能够有效补偿外部磁场产生的硬磁干扰和软磁干扰,与传统的椭圆模型补偿算法相比,该算法测得的航向角最大误差从2.0°减小到0.4°。  相似文献   

15.
机载合成孔径雷达(Synthetic Aperture Radar, SAR)的平台在飞行过程中由于受各种因素影响无法保持匀速直线运动而引入相位误差造成图像的散焦。PACE算法作为一种基于图像的自聚焦方法虽然具有聚焦效果好、鲁棒性高和能估计高频误差的优点,但是运算的高复杂度限制了其在一些实时性要求较高场合的应用。为了提升PACE算法的运行效率,本文提出一种优化PACE算法实现原PACE算法与基于子孔径划分的多项式拟合PACE算法的结合,详细论述了新算法的工作原理和实现过程,最后通过在真实数据上将优化PACE算法与原PACE算法进行对比,验证了优化PACE具有和原PACE算法接近的补偿效果和更少的运算时间。  相似文献   

16.
焦飞  赵忠  王璐 《测控技术》2007,26(10):85-87
对磁罗盘系统误差和目前多数文献所提出的全姿态磁航向误差补偿方法的不足进行了分析.针对具有一定俯仰角或横滚角的磁罗盘系统磁航向误差建模和补偿问题,提出了基于径向基函数(RBF)神经网络的修正方法,并与BP神经网络方法进行了比较.在分析算法原理的基础上进行了实验仿真,结果表明:采用RBF神经网络在明显提高网络收敛速度的基础上,大大减小了全姿态磁航向误差,校正效果优于BP神经网络.  相似文献   

17.
传感器测量条件的变化会导致其输入输出特性偏离其原有的标定特性,从而产生测量误差.针对此问题,提出利用RBF神经网络进行传感器测量误差补偿,并设计基于智能传感器系统的实现补偿的方法.  相似文献   

18.
数字温度传感器存在零点误差与非线性误差,需要进行误差补偿.提出了一种复合径向基函数神经网络(CRBFNN)的数字温度传感器误差补偿方法:首先根据数字温度传感器的误差特征,构造两个相互独立的子RBFNN网络,获得两个独立的冗余补偿值;然后根据特征阈值、数字温度传感器的输出估计器和权值调节器,获得复合RBFNN输出融合权值...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号