首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inspired by the TM−N4 coordination environment in single-atom catalysts, four novel TM-decorated B24N24 (TM = Sc, Ti) fullerenes with six TM−N4 or TM−B4 units are designed. Molecular dynamic simulations confirm that the four TM6B24N24 fullerenes are thermodynamically stable. Their hydrogen storage properties were investigated using density functional theory calculations. Sc/Ti atoms bind to the N4/B4 cavities with an average interaction energy of 6.30–11.96 eV. Hence, the problem of clustering can be avoided. 36H2 could be adsorbed with average hydrogen adsorption energies of 0.18–0.55 eV. The lowest hydrogen desorption temperatures at atmospheric pressure for Sc6B24N24(N4)–36H2, Sc6B24N24(B4)–36H2, Ti6B24N24(N4)–36H2, and Ti6B24N24(B4)–36H2 are 255 K, 318 K, 243 K, and 408 K, respectively. The maximum hydrogen gravimetric densities of the Sc6B24N24 and Ti6B24N24 systems are 7.74 wt% and 7.50 wt%, respectively. Therefore, the novel Sc6B24N24 and Ti6B24N24 could be suitable as potential hydrogen storage materials at ambient temperature.  相似文献   

2.
Inspired by the TM?N4 coordination environment and the promising hydrogen adsorption property of the Ti–C4 unit, four novel TM6C24N24 (TM = Sc, Ti) cages with six TM?N4/TM?C4 units are designed simultaneously for the first time in this paper. Their stabilities are studied by using DFT calculations and confirmed by MD simulations. Sc6C24N24(N4) and Ti6C24N24(N4) can absorb 30 hydrogen molecules and keep the original structures intact. The average hydrogen adsorption energy is 0.13–0.26 eV for Sc6C24N24(N4)-6nH2 (n = 1–5), and 0.09–0.23 eV for Ti6C24N24(N4)-6nH2 (n = 1–5). The hydrogen storage capacities are 6.30 wt % and 6.20 wt %, respectively. Besides, the 30H2 can be readily adsorbed on Sc6C24N24(N4) under 160 K and 100% desorbed at 270 K under 0.1 MPa. The desorption temperature could increase if the pressure becomes higher. Sc6C24N24(C4)/Ti6C24N24(C4) complexes are higher in energy than corresponding Sc6C24N24(N4)/Ti6C24N24(N4). They are not suitable as room-temperature hydrogen storage materials due to the structural deformation in the hydrogen storage process.  相似文献   

3.
Doping heteroatoms and producing defects are perfect methods to improve the hydrogen storage property of TM-decorated carbon materials. In this view, four novel Sc/Ti-decorated and B- substituted defective C60 fullerenes (B24C24) are explored. The special stability, large specific surface, uniform distribution of the metal and positively charged states make these four fullerenes have high hydrogen storage capacities. Especially, each Sc atom in Sc6B24C24(B4) can adsorb up to five H2 molecules with a storage capacity of 6.80 wt %. The adsorbed H2 molecules in Sc6B24C24(B4)–30H2 begin to relax at 190 K and are 100% released at 290 K. Moreover, a comparative study is carried out for hydrogen storage properties of Sc-decorated B4, C4, or N4 coordination environments. These results provide a new focus on the nature of B-, and N-substituted defective carbon nanomaterials.  相似文献   

4.
The effect of charge on the dihydrogen storage capacity of Sc2–C6H6 has been investigated at B3LYP-D3/6-311G(d,p) level. The neutral system Sc2–C6H6 can store 8H2 with gravimetric density of 8.76 wt %, and one H2 dissociates and bonds atomically on the scandium atom. The adsorption of 8H2 on Sc2–C6H6 is energetically favorable below 155 K. The atom-centered density matrix propagation (ADMP) molecular dynamics simulations show that Sc2–C6H6 can adsorb 3H2 within 1000 fs at 300K. Compared with Sc2–C6H6, the charged systems can adsorb more hydrogen molecules with higher gravimetric density, and all the H2 are adsorbed in the molecular form. The gravimetric densities of Sc2–C6H6+ and Sc2–C6H62+ are 9.75 and 10.71 wt%. Moreover, the maximum adsorption of charged systems are favorable in wider temperature range. Most importantly, the ADMP-MD simulations indicate that Sc2–C6H62+ can adsorb 6 hydrogen molecules within 1000 fs at 300K. It can be found that the gravimetric density (6.72 wt%) of Sc2–C6H62+ still exceeds the target of US Department of Energy (DOE) under ambient conditions.  相似文献   

5.
Interaction of molecular hydrogen with Li and Ti doped boron substituted naphthalene viz. C6B4H8Ti2 and C6B4H8Li2 has been studied using density functional theory (DFT) method. The C6B4H8Li2 complex can interact with maximum of four hydrogen molecules, whereas three H2 molecules are adsorbed on C10H8Li2 complex. The C6B4H8Ti2 complex can interact with maximum of eight hydrogen molecules. The gravimetric hydrogen uptake capacity of C6B4H8Ti2 and C6B4H8Li2 complex is found to be 6.85 and 5.55 wt % respectively, which is higher than that of unsubstituted C10H8Ti2 and C10H8Li2 complexes. The boron substitution has significantly affected the hydrogen adsorption energies. The H2 adsorption energy and Gibb's free energy corrected H2 adsorption energy are found to be more prominent after boron substitution. The C6B4H8Ti2 and C6B4H8Li2 complexes are more stable than the respective unsubstituted C10H8Ti2 and C10H8Li2 complexes due to their higher binding energies. According to the atom-centered density matrix propagation (ADMP) molecular dynamics simulations C6B4H8Li2 complex retain not a single adsorbed hydrogen molecule during the simulation at room temperature, whereas five hydrogen molecules at 300 K and eight at 100 K are remain absorbed on C6B4H8Ti2 complex. The C6B4H8Ti2 complex is found to be more promising material for hydrogen storage than C10B4H8Li2.  相似文献   

6.
With respect to first-principles calculations, the sandwich-type dinuclear organometallic compounds as (C5H5)2TM2 (M = Sc and Ti) can adsorb up to eight hydrogen molecules. The corresponding gravimetric hydrogen-storage capacity is 6.7 wt% for (C5H5)2Ti2 and 6.8 wt% for (C5H5)2Sc2. The multimetallocenes (e.g., CpTi3Cp and CpTi4Cp) complexes can further increase the H2 adsorption capacity to 8.7 wt% and 10.4 wt%, respectively. These sandwich-type organometallocenes proposed in this work are favorable for reversible adsorption and desorption of hydrogen under ambient conditions. These predictions will likely provide a new route for developing novel high-capacity hydrogen-storage materials.  相似文献   

7.
The H2 storage properties of isoreticular metal-organic framework materials (IRMOFs), MOF-5 and IRMOF-10, impregnated with different numbers and types of heterogeneous C48B12 molecules were investigated using density functional theory and grand canonical Monte Carlo (GCMC) calculations. The excess hydrogen adsorption isotherms of IRMOFs at 77 K within 20 bar indicate that suitable number and type of C48B12 molecules play a crucial role in improving the H2 storage properties of IRMOFs. Among the studied pure and nC48B12 (n = 1, 2, 4, 8) in Ci symmetry impregnating into MOF-5, at 77 K under 6 bar, MOF-5-4C48B12 with a 3.5 wt% and 29.9 g/L hydrogen storage density, and at 77 K under 12 bar, the pure MOF-5 with a 4.9 wt% and 31.0 g/L hydrogen storage density has the best hydrogen storage properties. Whereas, among the studied pure and nC48B12 (n = 1, 2, 4, 8) in S6 symmetry impregnating into IRMOF-10, IRMOF-10-8C48B12 always shows the best hydrogen storage properties among the pure and C48B12-impregnated IRMOF-10 at 77 K within 20 bar. IRMOF-10-8C48B12 has a 6.0 wt% and 34.6 g/L hydrogen storage density at 77 K under 6 bar, and has a 7.1 wt% and 41.4 g/L hydrogen storage density at 77 K under 12 bar. The confinement effect of IRMOFs on C48B12 molecules, and steric hindrance effect of C48B12 molecules on IRMOFs mainly affects the H2 uptake capacity by comparing the absolute H2 molecules in individual IRMOFs units, C48B12 molecules, and IRMOFs-nC48B12 compounds. The absolute hydrogen adsorption profiles show that eight C48B12 molecules impregnating into MOF-5 can exert obvious steric effects for H2 adsorption. The saturated gravimetric and volumetric H2 densities of IRMOF-10-8C48B12 higher than those of MOF-5-8C48B12 due to with larger free volume.  相似文献   

8.
For an envisioned hydrogen (H2) economy, the design of new multifunctional two-dimensional (2D) materials have been a subject of intense research for the last several decades. Here, we report the thriving H2 storage capacity of 2D nitrogenated holey graphene (C2N), functionalized with Tin (n = 1–5) clusters. By using spin polarized density functional theory (DFT) calculations implemented with the van der Waals corrections, the most favourable adsorption site for the Tin clusters on C2N has been revealed. With the monomer Ti, the functionalization was evenly covered on C2N having 5% doping concentration (C2N–Ti). For C2N–Ti sheet, Ti binds to C2N with a strong binding energy of ~6 eV per Ti which is robust enough to hinder any Ti–Ti clustering. Bader charge analysis reveals that the Tin clusters donate significant charges to C2N sheet and become cationic to polarize the H2 molecules, thus act as efficient anchoring agents to adhere multiple H2 molecules. Each Ti in C2N–Ti could adsorb a maximum of 10H2 molecules, with the adsorption energies in the range of ?0.2 to ?0.4 eV per H2 molecule, resulting into a high H2 storage capacity of 6.8 wt%, which is promising for practical H2 storage applications at room temperature. Furthermore, Tim (m = 2, 3, 4, 5) clusters have been selectively decorated over C2N. However, with Tim functionalization H2 storage capacities fall short of the desirable range due to large molecular weights of the systems. In addition, the H2 desorption mechanism at different conditions of pressure and temperature were also studied by means of thermodynamic analysis that further reinforce the potential of C2N–Ti as an efficient H2 storage material.  相似文献   

9.
The B6Be2 and B8Be2 clusters, adopting fascinating inverse sandwich-like geometries, were recently predicted with quantum chemical calculations. Both systems exhibit the high stability and double aromaticity with 4σ/6π or 6σ/6π delocalized electrons. The hydrogen storage of two systems is studied in the present paper. Our calculations show that B6Be2 and B8Be2 clusters have the ultra-high capacity hydrogen storage, each Be site can bound up with seven H2 molecules, corresponding to a gravimetric density of 25.3 wt percentage (wt%) for B6Be2 and 21.1 wt% for B8Be2, respectively, which far exceeds the target (5.5 wt%) proposed by the US department of energy (DOE) in 2017. The average absorption energies of 0.10–0.45 eV/H2 for B6Be2 and 0.11–0.50 eV/H2 for B8Be2 at the wB97XD level suggest that both systems are ideal for reversible hydrogen storage and release. The reversibility of H2 molecules on B6Be2 and B8Be2 complexes are faithfully demonstrated with the Born-Oppenheimer molecular dynamics (BOMD) simulations. The Be-doped boron nanostructure is a promising candidate for ultra-high hydrogen storage materials.  相似文献   

10.
In this work, adsorption of H2 molecules on heteroborospherene C2v C4B32 decorated by alkali atoms (Li) is studied by density functional theory calculations. The interaction between Li atoms and C4B32 is found to be strong, so that it prevents agglomeration of the former. An introduced hydrogen molecule tilts toward the Li atoms and is stably adsorbed on C4B32. It is obtained that Li4C4B32 can store up to 12H2 molecules with hydrogen uptake capacity of 5.425 wt% and average adsorption energy of ?0.240 eV per H2. Dynamics simulation results show that 6H2 molecules can be successfully released at 300 K. Obtained results demonstrate that Li decorated C4B32 is a promising material for reversible hydrogen storage.  相似文献   

11.
In this article, we have explored the hydrogen (H2) storage capacity of the Li doped B clusters LinB14(n = 1–5) using density functional theory (DFT). The geometrical and Bader's topological parameters indicate that the clusters adsorb H2 in the molecular form. The Li atom polarises the H2 molecules for their effective adsorption on the clusters. The LinB14 (n = 1–5) clusters are found to be stable even after H2 adsorption at room temperature. The average adsorption energy is found to be in the range of 0.12–0.14 eV/H2. Among the various clusters, the Li5B14 shows maximum H2 storage capacity (13.89 wt%) at room temperature. The ADMP simulation reveals that within few femtoseconds (fs), the H2 molecules begin to move away from the clusters and within 400 fs most of the H2 molecules moved away from the clusters.  相似文献   

12.
The structures and hydrogen storage capacities of B6Ti3+ have been theoretically investigated using DFT with PBE exchange and correlation functional. It is found that the most stable B6Ti3+01 cluster can maximally adsorb ten hydrogen molecules, which corresponds to a gravimetric uptake capacity of 8.82 wt%. The uptake capacity exceeds the 2015 target set by US Department of Energy for vehicular application. Moreover, the HOMO-LUMO gap value of B6Ti3+01 (10H2) is larger than that of B6Ti3+01, which manifests the B6Ti3+01 will be more stable after 10H2 adsorbed. The hydrogen adsorption energies with Gibbs free energy correction are carried out to reveal whether adsorption of hydrogen on B6Ti3+ is favorable or not at different temperatures. The results indicate that the adsorption of ten hydrogen molecules on B6Ti3+01 is energetically favorable in a fairly wide temperature range. Therefore, B6Ti3+01 is considered to be a promising material for hydrogen storage.  相似文献   

13.
The capacity of hydrogen adsorption of magnesium (Mg) decorated small boron (B) clusters (Mg2Bn; n = 4–14) was studied using density functional theory (DFT). The calculated results indicate that H2 adsorbed in the molecular form. The Bader's topological analysis indicates the presence of closed shell type interaction between clusters and H2 molecules. The clusters are stable even after the adsorption of H2 molecules. The average energy of H2 adsorption is calculated to be in the range of 0.13–0.22 eV/H2. The Mg2B6 cluster shows maximum H2 adsorption (8.10 wt%) at ambient temperature and pressure. Further, we have performed molecular dynamic (MD) simulation at room temperature for each cluster to understand adsorption and desorption of H2 molecules with time. The MD simulation revealed that most of the adsorbed H2 molecules moved away from the clusters within 200 fs. However, one H2 molecule remains attached with the Mg2B11 cluster even after 200 fs.  相似文献   

14.
Hydrogen adsorption properties of Be/Sc doped pentalene complexes are investigated using second ordered Møller-Plesset method (MP2). In order to study the boron substitution effect, pentalene is further modified by substituting two and four boron atoms for carbon atoms at different positions and named as TBP1 and TBP2 for two boron atom substituted structures and FBP1 and FBP2 for four boron atom substituted structures. Two H2 molecules get adsorbed on each Be doped complex and having 3.25, 3.31, 3.31, 3.38 and 3.38 wt% H2 uptake capacity for C8H6Be2, TBP1Be2, TBP2Be2, FBP1Be2 and FBP2Be2 complexes respectively. All Sc doped pentalene and boron substituted pentalene complexes can interact with nine H2 molecules except TBP2Sc2 complex. The TBP2Sc2 complex can adsorb eight H2 molecules. The H2 uptake capacity is found to be 8.63, 8.73, 7.84, 8.83 and 8.83 wt% for C8H6Sc2, TBP1Sc2, TBP2Sc2, FBP1Sc2 and FBP2Sc2 complexes respectively. Gibbs free energy corrected adsorption energy plots show that the H2 adsorption on all Be doped complexes is possible at all temperatures and pressures considered here. The TBP1Sc2 complex seems to be more promising hydrogen storage material among all Sc doped complexes over a wide range of temperature and pressure. The H2 desorption temperatures obtained for the Be doped complexes are higher than the Sc doped complexes. Stability of the complexes is predicted with the help of the gap between the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals.  相似文献   

15.
This work reports the dihydrogen adsorption and storage capacity of cage-like clusters (C12Ti6 and C12Ti62+) using density functional theory calculations. The neutral system C12Ti6 can adsorb 15 hydrogen molecules, however, some hydrogen molecules will dissociate and bond atomically on titanium atoms. The strong binding energy will cause high operating temperature to desorb hydrogen during the application process. Fortunately, the cationic system C12Ti62+ can adsorb up to 16H2 all in molecular form. Moreover, the predicted maximal hydrogen storage density is 6.96 wt% and the average adsorption energies of C12Ti62+ (nH2) (n = 1–16) are in the desirable range of reversible hydrogen storage at the 6-311G(d,p)-B3LYP and M06-2X levels. The interaction of C12Ti62+ with hydrogen molecules is considered by means of the bond critical points (bcp) in the quantum theory of atoms in molecules (QTAIM). With respect to Gibbs free energy corrected H2 adsorption energy, C12Ti62+ adsorbs 16H2 molecules should be at low temperature (190 K). These predictions show that cationic C12Ti62+ is more suitable as a material for adsorbing dihydrogen.  相似文献   

16.
Based on the density functional theory, we investigate the electronic properties of the clusters M2B7 (M = Be, Mg, Ca) and their hydrogen storage properties systematically in this paper. Extensive global search results show that the global minimal structures of the three systems (Be2B7, Mg2B7 and Ca2B7) are heptagonal biconical structure, and the two alkaline earth metals are located at the top of the biconical. Chemical bonding analyses show that M2B7 clusters have 6σ and 6π delocalized electrons, which are doubly aromatic. At the wB97XD level, the three systems have good hydrogen storage capabilities. The hydrogen storage density of Be2B7 is as high as 23.03 wt%, while Mg2B7 and Ca2B7 also far exceed the hydrogen storage target set by the U.S. Department of Energy in 2017. Their average adsorption energies of H2 molecules all ranged from 0.1 eV/H2 to 0.48 eV/H2, which is fall in between physisorption and chemisorption. Extensive Born Oppenheimer molecular dynamics (BOMD) simulations show that the H2 molecules of the three systems can be completely released at a certain temperature. Therefore, M2B7 systems can achieve reversible adsorption of H2 molecules at normal temperature and pressure. It can be seen that the B7 clusters modified by alkaline earth metals may become a promising new nano-hydrogen storage material.  相似文献   

17.
Searching advanced materials with high capacity and efficient reversibility for hydrogen storage is a key issue for the development of hydrogen energy. In this work, we studied systematically the hydrogen storage properties of the pure C7N6 monolayer using density functional theory methods. Our results demonstrate that H2 molecules are spontaneously adsorbed on the C7N6 monolayer with the average adsorption energy in the range of 0.187–0.202 eV. The interactions between H2 molecules and C7N6 monolayer are of electrostatic nature. The gravimetric and volumetric hydrogen storage capacities of the C7N6 monolayer are found to be 11.1 wt% and 169 g/L, respectively. High hardness and low electrophilicity provides the stabilities of H2–C7N6 systems. The hydrogenation/dehydrogenation (desorption) temperature is predicted to be 239 K. The desorption temperatures and desorption capacity of H2 under practical conditions further reveal that the C7N6 monolayer could operate as reversible hydrogen storage media. Our results thus indicate that the C7N6 monolayer is a promising material with efficient, reversible, and high capacity for H2 storage under realistic conditions.  相似文献   

18.
This research describes the theoretical study of the adsorption of lithium clusters on graphene and the ability to capture hydrogen molecules. The results of the studied structures showed that the [Li1C54H18]+ system is capable of accepting three hydrogen molecules showing adsorption energies of 0.12 eV. On the other hand, it is important to note that in [LinC54H18] n = 2–6 systems, the lithium atoms that do not interact with the graphene surface, they can adsorb up to four hydrogen molecules. The [Li6C54H18]4H2 system presented a higher adsorption energy value of 0.31 eV. Finally, the Li–H2 interactions were characterized by a NBO analysis, which showed that hydrogen atoms are the donors and lithium atoms are the acceptors.  相似文献   

19.
This study uses first-principles calculations to investigate and compare the hydrogen storage properties of Ti doped benzene (C6H6Ti) and Ti doped borazine (B3N3H6Ti) complexes. C6H6Ti and B3N3H6Ti complex each can adsorb four H2 molecules, but the former has a 0.11 wt% higher H2 uptake capacity than the latter. Ti atoms bind to C6H6 more strongly than B3N3H6. The hydrogen adsorption energies with Gibbs free energy correction for C6H6Ti and B3N3H6Ti complexes are 0.17 and 0.45 eV, respectively, indicating reversible hydrogen adsorption. The hydrogen adsorption properties of C6H6Ti have also been studied after boron (B) and nitrogen (N) atom substitutions. Several B and N substituted structures between C6H6Ti and B3N3H6Ti with different boron and nitrogen concentration and at different positions were considered. Initially, one boron and one nitrogen atom is substituted for two carbon atoms of benzene at three different positions and three different structures are obtained. Seven structures are possible when four carbon atoms of benzene are replaced by two boron and two nitrogen atoms at different positions. The hydrogen storage capacity of the C6H6Ti complex increases as boron and nitrogen atom concentrations increases. The positions of substituted boron and nitrogen atoms have less impact on H2 uptake capacity for the same B and N concentration. The position and concentration of B and N affects the H2 adsorption energy as well as the temperature and pressure range for thermodynamically favorable H2 adsorption. The H2 desorption temperature for all the complexes is found to be higher than 250 K indicates the stronger binding of H2 molecules with these complexes.  相似文献   

20.
In this work, we present the hydrogen adsorption capacity of Sc doped small boron clusters (BnSc2, n = 3–10) using density functional theory. Almost no structural change was observed in the host clusters after hydrogen adsorption. Stabilities of the studied clusters were confirmed by various reactivity parameters such as hardness (η), electrophilicity (ω), and electronegativity (χ). The average adsorption energies was found in the range of 0.08–0.19 eV/H2 inferring physisorption process, and the fact is also supported by the average distance from Sc to H2 molecules which was in the range of 2.13 Å-2.60 Å. All the clusters were found to have gravimetric density satisfying the target set by the U.S. Department of Energy (US-DOE) (5.5 wt% by 2020). From Bader's topological analysis, it was confirmed that the nature of interaction was likely to be somewhat closed shell type. ADMP molecular dynamics simulations study was performed at different temperatures to understand the adsorption and dissociation of H2 from the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号