共查询到20条相似文献,搜索用时 0 毫秒
1.
研究了退火温度对Ti-6Al-3Nb-2Zr-1Mo合金组织和力学性能的影响。结果表明:随着退火温度升高,初生α相含量降低,2°~15°小角度晶界逐渐减少;退火温度较高时,退火过程中发生了α相→β相→α相的相变,<0001>//横向织构消失。随着退火温度升高,Ti-6Al-3Nb-2Zr-1Mo合金屈服强度逐渐降低,抗拉强度、延伸率先升高后降低。退火温度升高后,片层组织比例升高,裂纹扩展功占冲击吸收功的比例增大,材料韧性提升。 相似文献
2.
3.
通过研究元素添加方式对粉末冶金Ti-6Al-3Nb-2Zr-1Mo(Ti80)合金微观组织和力学性能的影响,探索了提高粉末冶金Ti80合金材料性能的途径和方法.结果表明:要得到相对密度大于97%的粉末冶金烧结坯,Al必须以NbAl、ZrAl、MoAl、MoAlTi等中间合金方式进行添加;Nb、Zr可以单质或中间合金方式添加;Mo需要以MoAl或MoAlTi中间合金方式添加.Ti不能完全以TiH2的方式添加;当Ti以纯Ti粉方式添加时,拉伸断口没有裂纹产生;当Ti以TiH2方式添加时,断口有显著的裂纹产生;H是裂纹产生的主要原因.当元素以合适的方式添加时,Ti80合金烧结件的性能可达到:σb=890~1020MPa,σ0.1=755~875MPa,σ0.2=785~895MPa,δ5=5.5%~9.0%,Ψ=11%~20%,与锻态性能相比,强度性能有显著提高,而塑性降低. 相似文献
4.
《塑性工程学报》2019,(6)
利用Gleeble-1500热模拟试验机对Ti-6Al-3Nb-2Zr-1Mo合金片层组织进行热压缩实验,实验温度为850~1050℃,应变速率为0. 01~1 s~(-1),变形量为60%。实验结果表明,热加工温度一定时,流变应力随变形量和应变速率的增加而急剧增加直至达到峰值,然后下降,最后趋于平缓,这是由加工硬化和动态再结晶所致。应变速率恒定时,随着变形温度的上升,流变应力随之降低。绘制应力-应变曲线,计算其热变形激活能Q为748. 845 k J·mol~(-1),构建本构方程,并在动态材料模型的基础上建立了热加工图。并通过加工图确定3个失稳区,变形温度为980~1030℃、应变速率为0. 3~1 s~(-1)时合金发生剪切,形成绝热剪切带。结合加工图,确定了适合的加工区域,即加工温度为970~1010℃,应变速率为0. 03~0. 07 s~(-1)。 相似文献
5.
利用Gleeble-3800热模拟试验机,在变形温度为820-1060℃及应变速率为0.001-1s-1参数范围内对Ti-6Al-3Nb-2Zr-1Mo钛合金进行等温恒应变速率压缩试验。建立了该合金的高温变形本构方程,得到两相区和单相区的表面激活能分别为764.714 和126.936 kJ/mol。基于DMM和Prasad失稳准则建立了应变为0.4和0.7时的热加工图。分析加工图发现: Ti-6Al-3Nb-2Zr-1Mo钛合金在840–1060 ℃,应变速率为0.001–0.1 s-1,之间主要发生DRV/DRX,此区间变形时耗散率峰值51%分别出现在940℃/0.001s-1和880℃/1s-1,其变形后微观组织演变机制与热加工图匹配较好,当变形发生在820℃,较高应变速率(≥1s-1)下该合金加工时易发生流变失稳现象。 相似文献
6.
通过对Ti-6Al-3Nb-2Zr-1Mo合金820~970℃,0.001~1 s~(-1)条件下的热模拟压缩试验,得到不同变形条件下的高温变形真应力-真应变曲线。基于此实验数据建立了该合金BP-ANN本构预测模型和传统的回归模型。结果表明:2个模型的最大相对误差分别为4.35%和13.9%,平均绝对误差AARE分别为1.42%和6.53%,说明BP-ANN模型具有较优异的预测能力,此模型可作为Ti-6Al-3Nb-2Zr-1Mo钛合金高温变形本构模型。 相似文献
7.
8.
9.
10.
采用熔模精密铸造及热等静压技术制备Ti-24Al-15Nb-1Mo合金模拟件,然后在600、650、700℃大气氛围下,经过100、300、500 h热暴露,取样研究其微观组织和室温拉伸性能的变化。结果表明,在热暴露过程中,Ti-24Al-15Nb-1Mo合金的非平衡组织逐渐向平衡态转变,导致自身组织分解、析出、粗化等一系列的转变,从而对合金的力学性能产生较大影响。经热暴露后,其抗拉强度从863 MPa下降到最低742.7 MPa,塑性也有所下降,延伸率相对热等静压态的最大下降量为56%。 相似文献
11.
12.
在变形温度为193~298 K、应变速率为2000~3000 s-1的范围内,对Ti6321钛合金进行动态压缩试验,研究温度和应变速率对材料力学性能和变形行为的影响。采用光学显微镜(OM)、透射电子显微镜(TEM)和电子背散射衍射(EBSD)表征和分析了合金的微观结构演变。结果表明,随着温度的降低和应变速率的增加,Ti6321钛合金的动态屈服强度和平均流动应力均增大,而断裂应变明显降低。采用Johnson-Cook本构方程预测了Ti6321钛合金在低温高应变速率下的力学行为,拟合结果与实验结果吻合较好。微观结构分析表明,随着变形温度的降低,{112 }和{101 }2种孪晶的含量明显增加,即变形机制逐渐由孪晶的辅助作用转变为孪晶占主导地位。 相似文献
13.
以混合元素粉末为原料,采用激光立体成形(Laser solid forming, LSF)技术制备新型Ti-6Al-6Mo合金。研究了沉积态试样的显微组织以及固溶时效处理对合金显微组织形成及硬度的影响。结果表明,本研究所采用的热处理制度对原始β晶粒形貌没有显著的影响;固溶温度、固溶时间和固溶后的冷却方式对原始β晶粒中α相的形貌和尺寸以及LSF Ti-6Al-6Mo合金的显微硬度均有显著影响。当时效时间超过4小时后,随着时效时间的延长,合金的显微组织和显微硬度均未产生明显变化。基于不同热处理条件下LSF Ti-6Al-6Mo合金中初生α板条和次生α板条的析出机制及其对β基体的强化作用分析,揭示了热处理对LSF Ti-6Al-6Mo合金的显微组织和显微硬度的影响机理。 相似文献
14.
热处理对Ti-7Al-4Mo合金组织与性能的影响 总被引:1,自引:0,他引:1
对经过普通退火和固溶时效处理的Ti-7Al-4Mo合金的组织与性能进行研究.结果表明,炉冷时退火温度从780 ℃升高到790 ℃,强度下降,塑性变化不明显;继续升高到800 ℃时,强度和塑性变化不明显;空冷时,退火温度由740 ℃提高到790 ℃时,强度下降约3%,塑性略有提高.固溶时效处理可以显著提高强度,但塑性下降幅度较大;随着固溶温度的升高,强度显著提升,塑性显著下降;随时效温度的升高,抗拉强度显著降低,屈服强度下降较小,塑性明显提高. 相似文献
15.
采用真空自耗电弧炉进行3次熔炼得到Ti-22Al-24.5Nb-0.5Mo合金铸锭,铸锭经五火锻造、三火热轧、板材压校、表面处理等工序,得到规格为δ1.2 mm×600 mm×1000 mm的宽幅薄板。其中,五火锻造及第一火轧制均在单相区进行,第二火轧制为换向轧制并在两相区进行,成品轧制采用保温轧制的方式。结果表明:保温轧制温度为1050℃时板形最优,且经单时效或固溶+时效处理后均为脆性断裂。相比于固溶+时效的热处理方式,经单时效处理析出的等轴α_2相与次生针状O相较多,α_2相尺寸较大,O相片层细小,可以提高合金的强度。经固溶+时效处理可以提高合金的延伸率,但强度略低于单时效。 相似文献
16.
《稀有金属材料与工程》2004,21(2):23-26
研究了Ti-6Al-2Zr-1Mo-1V合金环锻件的宏观和微观组织,分析了锻件的变形和热处理工艺。对Ti-6Al-2Zr-1Mo-1V合金环锻件采用了β→α β温度区域的热变形工艺,即在卢区温度下开始变形,α β区温度下结束变形,锻件的退火温度略低于β相的临界分解温度了TK;采用β→α β温度区域热变形的锻件具有中等强度水平,良好的室温冲击性能和高温蠕变、持久性能;β→α β温度区域的变形工艺具有简化变形工序、降低变形抗力的优点,但变形时间的控制较难掌握,需一定的实践探索。 相似文献
17.
介绍了一种采用b相区开坯、α2+B2相区热轧、利用四辊可逆冷轧机冷轧Ti-22Al-24Nb-1Mo O相合金0.1 mm厚箔材的工艺过程.研究轧后退火和固溶处理对合金箔材组织和拉伸性能的影响.结果表明:退火后合金组织由等轴O相+B2相组成,其中O相(体积分数)约50%;固溶后合金组织由少量等轴O/α2相+B2相组成;经两种热处理工艺处理后,合金均能获得良好的室温拉伸性能. 相似文献
18.
采用微弧氧化技术,在磷酸盐溶液体系中在船用Ti-6Al-3Nb-2Zr合金表面制备陶瓷膜层.利用扫描电镜、光学显微镜、X射线衍射仪和显微硬度计对陶瓷膜的表面和截面形貌、氧化层厚度、相结构以及显微硬度进行观察测试,用电子万能材料试验机和数字万用表研究膜层的结合强度和绝缘性,并用MMS-1G高温高速销盘摩擦磨损试验机和YWX/Q-750盐雾试验机考察膜层的摩擦学性能和腐蚀性能.结果表明:膜层厚度可达到20 μm以上,陶瓷膜主要由金红石TiO2相和锐钛矿TiO2相构成,膜层与基体的结合强度达到30 MPa以上,膜层绝缘性和耐蚀性良好,耐磨性得到明显改善,膜层的磨损机制表现为轻微的磨粒磨损与粘着磨损,且以磨粒磨损为主. 相似文献
19.
通过高温压缩模拟实验,分析了Ti-6Al-2Zr-1Mo-1V合金在变形温度为850~1100℃,应变速率为0.01~10 s-1条件下的高温变形力学行为规律,并利用线性回归方法计算了不同温度范围内的应力指数n和变形激活能Q,获得了该合金高温变形力学行为计算模型.结果表明,Ti-6Al-2Zr-1Mo-1V合金对变形温度和应变速率非常敏感.在恒温时流动应力随应变速率的增大而增大,在恒应变速率时随变形温度的升高而降低.在850~950℃时,n、Q分别为7.0874和610.463 kJ/mol;而在950~1100℃时,n=4.7324,Q=238.030 kJ/mol,该预测模型的计算值与实测值之间的相对误差分别为6.341%和6.957%. 相似文献
20.
采用高真空非自耗电弧熔炼炉对Ti-35Nb-2Zr-0.3O (质量分数,%)合金进行熔炼。运用OM、XRD、SEM、TEM和静态热机械分析仪对Ti-35Nb-2Zr-0.3O合金进行表征,研究冷轧形变对合金显微组织及热膨胀行为的影响。结果表明:Ti-35Nb-2Zr-0.3O合金在冷轧过程中产生应力诱发马氏体α"(stress-induced martensiticα",SIMα")相,并形成平行于轧制方向的强110织构。等轴晶组织的Ti-35Nb-2Zr-0.3O合金表现出正常的热膨胀行为。形变后,合金的热膨胀行为出现异常现象,轧制方向表现为负膨胀,负膨胀程度随着形变量的增加而增大,截面方向表现为大于固溶态的正膨胀。30%形变合金的轧制方向在室温到250℃具有Invar效应,这一现象归因于SIMα"相变、晶格畸变和110织构的形成。冷轧态Ti-35Nb-2Zr-0.3O合金在室温到110℃的异常膨胀归因于SIMα"相到β相的晶格转变,而在高于110℃的异常膨胀行为归因于ω相和α相的析出。 相似文献