首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Southeastern Anatolia Project (GAP) region in Turkey is rich in water for irrigation and hydroelectric power. The Euphrates and Tigris rivers represent over 28% of the nation’s water supply by rivers, and the economically irrigable areas in the region make up 20% of those for the entry country. On the other hand, 85% of the total hydro capacity in operation has been developed by DSI, corresponding to 9931 MW (49 hydro plants) and 35,795 GWh/year respectively. The largest and most comprehensive regional development project ever implemented by DSI in Turkey is “The Southeast Anatolian (GAP) Project”, which is located in the region of Southeast Anatolia on the Euprates and Tigris rivers and their tributaries, which originate in Turkey. The energy potential of the Tigris and Euphrates is estimated as 12,000 GWh and 35,000 GWh, respectively. These two rivers constitute 10% and 30% of the total hydroelectric energy potential. The GAP region will be an important electric power producer with 1000 MW installed capacity from the Karakaya dam, 2400 MW installed capacity from the Atatürk dam and 1360 MW installed capacity from the Keban dam. The GAP region has a 22% share of the country’s total hydroelectric potential, with plans for 22 dams and 19 hydroelectric power plants. Once completed, 27 billion kWh of electricity will be generated annually.  相似文献   

2.
Renewable energy resources provide a large share of the total energy consumption of many developing countries. Turkey's renewable sources are the second largest source for energy production after coal. About two-thirds of the renewable energy produced is obtained from biomass, while the rest is mainly from hydroelectric energy. Hydropower is today the most important kind of renewable and sustainable energy. In Turkey, most of the important water power plants have been developed; hence, only a modest increase in the hydroelectric generating capability can be anticipated in the next two decades. Turkey has a gross annual hydro potential of 433,000 GWh, which is almost 1% of world total potential. Its share is about 16% of the total hydropower capacity in Europe. The total gross electricity production of Turkey has reached about 140,283 GWh in 2003, 75% of this is produced from thermal sources and the reminder 25% from hydropower. The main objective in doing the present study is to investigate the sustainable development of Turkey's small hydropower (SHP) plants. Development of SHP began in 1902 in Turkey. Total installed projects capacity of SHP plant is 2.45% and the total energy potential is about 2.96%, which have installed capacity less than 10 MW.  相似文献   

3.
Energy is one of the indispensable factors regarding the assurance of social prosperity and economic development of a country. The developing countries struggle to obtain energy sources reliable in the long term to complete their economic development, and the developed countries struggle to get them to keep their present prosperity levels. Coal seems to continue its indispensable position among the other energy sources for many years because of its production in more than 50 countries, the least effect it has from the price fluctuation and its usage lifespan of more than 200 years. The countries that are aware of it have investments in mining fields in the countries rich in coal reserves, and they continue investing considerable amount of money.  相似文献   

4.
This paper aims to analyze the hydropower potential of municipal water supply dams in Turkey. The facility is in favor with the energy policy of Turkish Government and European Union. In the study, the design head of the power plant was selected as the average water level of the reservoir and the discharge was calculated from the annual water supply of the dam. It has been estimated that the existing 45 municipal water supply dams of Turkey have an electric energy potential of 173 GWh/year, corresponding to about 24,000,000 Euro/year economic benefit. The financing of these facilities can be provided from international funding institutions. For a case study, Zonguldak Ulutan Dam and its water treatment plant have been investigated in detail. The current electricity consumption of the water treatment plant is 4,500,000 kWh/year and the facility provides 35,000 m3/day water to 6 settlements. The installation of a hydropower plant on the mentioned water treatment plant will cut the electric consumption by 24%. The proposed project has a payback period of 1.4 years and it can produce clean and feasible energy.  相似文献   

5.
This paper aims to evaluate the development of small hydropower (SHP) in Turkey and discusses the current situation of SHP plants in terms of government policy, economical aspects and environmental impacts taking EU policy into account. The laws published in recent years in Turkey succeeded in promoting the utilization of renewable energy for electricity generation, but it is considered that those laws are not fully compatible with EU policy. After the publication of Renewable Energy Law (Law No. 5346) there occurred a boost in SHP project along with hydropower development. Thus, the hydropower potential of Turkey increased 15% and the construction of hydropower plants also increased by a factor of four in 2007 as compared to 2006. Investment and operating costs are in favor of SHP development in Turkey as having the lowest costs among European countries (300–1000 €/kW as investment cost and 1 €cent/kWh as operating cost). Turkish governments have taken precautions for environmental issues resulted from renewable energy utilization but these are obviously not adequate. It is concluded that more attention must be paid on environmental issues and monitoring of the facilities must be enabled with further laws or regulations.  相似文献   

6.
As of 2010, the energy service market in Europe is still far from utilising its full potential. Wide-scale peer-reviewed studies investigating the development and up-to-date status of the European ESCo market are scarce. This article presents a comprehensive insight of the European ESCo industry based on the results from a large-scale survey carried out 2009–2010 in 39 European countries. The observed market development during the period 2007–2010, trends in business practices, and factors influencing the ESCo industry evolution are described. Finally, having considered the remaining barriers and the supporting factors as well as the successful experiences in Europe, policy measures that could further promote ESCo activities are proposed.  相似文献   

7.
The need for governments to reduce the exposure of energy consumers to future increases in fossil fuel prices places urgent pressure on policy-makers to deliver fundamental transformations in energy strategies, particularly in jurisdictions with high dependency on fossil fuel sources (Dorian et al., 2006). This transformation is unlikely without a high level of stakeholder engagement in the policy development process. This paper describes two policy development processes recently undertaken in Nova Scotia in which the inclusion of stakeholder views was central to the approach. The first delivered a new institutional framework for electricity energy efficiency involving the inception of an independent performance-based administrator. The second required the delivery of a strategy to significantly increase renewable energy generation in the Province. It involved recommendations for changes in institutional arrangements, financial incentives and technological options. This process was followed by new commitments to renewable energy developments, new infrastructure for the importation of hydro-electricity, and the announcement of FITs for ocean energy. In both cases, recommendations were made by an independent academic institution, and the Government responded directly to a majority of recommendations. The paper concludes with a discussion of lessons learned and the implications for future energy policy making in carbon-intensive jurisdictions.  相似文献   

8.
An increase in the world population has accelerated the consumption of fossil fuels and deepened the pollution of global environment. As a result of these human activities, it is now difficult to clearly guarantee the sustainable future of humankind. An intuitional ‘must-go path’ scenario for the sustainable development of human civilization is proposed by extrapolating the human historical data over 30 years between 1970 and 2000. One of the most important parameters in order to realize the ‘must-go path’ scenario is the sustainability of energy without further pollution. In some countries an expanded use of nuclear energy is advantageous to increase sustainability, but fast reactor technology and closed fuel cycle have to be introduced to make it sustainable. In other countries, the development of cost-effective renewable energy, and the clean use of coal and oil are urgently needed to reduce pollution. The effect of fast nuclear reactor technology on sustainability as an option for near-term energy source is detailed in this paper. More cooperation between countries and worldwide collaboration coordinated by international organizations are essential to make the ‘must-go path’ scenario real in the upcoming 20 or 30 years.  相似文献   

9.
This research applies both quantitative and qualitative methods to investigate stakeholder preferences towards sustainable development (SD) priorities in Clean Development Mechanism (CDM) projects. The CDM's contribution to SD is explored in the context of a biomass (rice husk) case study conducted in Thailand. Quantitative analysis ranks increasing the usage of renewable energy as the highest priority, followed by employment and technology transfer. Air pollution (dust) is ranked as the most important problem. Preference weights expressed by experts and local resident are statistically different in the cases of: employment generation; emission reductions; dust; waste disposal; and noise. Qualitative results, suggest that rice husk CDM projects contribute significantly to SD in terms of employment generation, an increase in usage of renewable energy, and transfer of knowledge. However, rice husk biomass projects create a potential negative impact on air quality. In order to ensure the environmental sustainability of CDM projects, stakeholders suggest that Thailand should cancel an Environmental Impact Assessment (EIA) exemption for CDM projects with an installed capacity below 10 MW and apply it to all CDM projects.  相似文献   

10.
The complicated nature of regional development requires a more integrated approach to reflect its systematic picture. Multi-scale integrated analysis of societal metabolism (MSIASM) is such an approach as it integrates economic, social and ecological dimension. In this paper, we employ such an approach to evaluate regional societal and ecosystem metabolism in China. We set up a series of indicators to present different development perspectives and employ a complete decomposition model to further identify key factors for regional sustainable development. Our research outcomes indicate that both west and north China rely on natural resource for their development while east and south China have more balanced sector structure. We also found that urban areas, especially those large cities, have already reached the level of those developed countries. Thus, how to reduce the gap between urban and rural contexts will be the next challenge of the Chinese government. From temporal point of view, although in recent years China gained great achievement for economic development, there is a lack of attention on improving people’s life quality and social service. This requires a more balanced development strategy so that different regions can better utilize their resources and support each other and a more balanced sector structure so that economic development will not be always the main focus of regional government and more attention on improving social welfare will be paid.  相似文献   

11.
This paper presents new forms of urban renewable energy, in particular, the integration of solar and wind power into the industrial and commercial buildings with flat roofs which populate a city's downtown core. This combination of renewable energy passively adapts to pre-existing structures and exploits them to their full advantage. The working prototypes presented aim to introduce an element of multi-functionality to building-integrated photovoltaics (BIPV), creating systems which produce energy while meeting required needs and desirable features of urban buildings. We also explore the combination of wind energy and various energy efficiency initiatives with BIPV designs. Our energy efficiency initiatives include a new method of generating the perception of natural sunlight from artificial light and brainwave controlled lighting that dims automatically when occupants’ concentration is lowered. These efforts result in an environment that celebrates the existential notion of self-empowerment through reducing energy consumption and having control over one's own energy production. Our discussion follows into market considerations of our BIPV designs and how project costs are lowered and space is conserved, assets when designing for urban locations. The test site for the development of urban renewable energy is the Existential Technology Research Center (ETRC), located in downtown Toronto, Canada.  相似文献   

12.
This study applies a socio-technical systems perspective to explore innovation dynamics of two emerging energy technologies with potential to reduce greenhouse gas emissions from electrical power generation in the United States: carbon capture and storage (CCS) and enhanced geothermal systems (EGS). The goal of the study is to inform sustainability science theory and energy policy deliberations by examining how social and political dynamics are shaping the struggle for resources by these two emerging, not-yet-widely commercializable socio-technical systems. This characterization of socio-technical dynamics of CCS and EGS innovation includes examining the perceived technical, environmental, and financial risks and benefits of each system, as well as the discourses and actor networks through which the competition for resources – particularly public resources – is being waged. CCS and EGS were selected for the study because they vary considerably with respect to their social, technical, and environmental implications and risks, are unproven at scale and uncertain with respect to cost, feasibility, and life-cycle environmental impacts. By assessing the two technologies in parallel, the study highlights important social and political dimensions of energy technology innovation in order to inform theory and suggest new approaches to policy analysis.  相似文献   

13.
Noam Lior 《Energy》2011,36(6):3620-3628
This paper introduces the ECOS 2009 conference World Energy Panel, and presents the opening talk that briefly surveys the present (2009) situation in sustainable energy development. Recent (2008) estimates and forecasts of the oil, gas, coal resources and their reserve/production ratio, nuclear and renewable energy potential, and energy uses are surveyed. A brief discussion of the status, sustainability (economic, environmental and social impact), and prospects of fossil, nuclear and renewable energy use, and of power generation (including hydrogen, fuel cells, micro-power systems, and the futuristic concept of generating power in space for terrestrial use), is presented. Comments about energy use in general, with more detailed focus on insufficiently considered areas of transportation and buildings are brought up. Ways to resolve the problem of the availability, cost, and sustainability of energy resources alongside the rapidly rising demand are discussed. The author’s view of the promising energy R&D areas, their potential, foreseen improvements and their time scale, and last year’s trends in government funding are presented.  相似文献   

14.
The increasing energy challenges faced, in particular, by isolated communities, such as insular communities, call for an integrated, flexible and easy-to-apply methodology aiming at providing a list of renewable energy sources) (RES) projects capable to reduce green house gas (GHG) emissions, satisfy future energy forecasts and reach the objectives of international/national energy directives and obligations, as, for example, the ones set by the Kyoto Protocol by 2010. The EU project EMERGENCE 2010 developed such a methodology that is implemented here in the case study of wind parks in the Dodecanese islands in Greece. The results obtained consist of a final list of financially viable RES wind projects, for which various barriers have been previously identified and assessed. The additional advantages of the proposed methodology is that besides providing as an end result a comprehensive list of RES projects adopted to specific criteria and regional priorities, it also allows space for involving – from early stages – the local community and stakeholders in the decision-making process (participatory planning); in this way, the EMERGENCE 2010 methodology may assist towards the RES promotion and public acceptance, the profitability of RES investments and the regional sustainable development.  相似文献   

15.
Modern transportation nowadays has evolved into an important economic activity for human civilisation. Even though various alternative energy solutions have been put forward to reduce the dependency on fossil fuels, biofuels remain one of the few options which are capable of replacing the roles of fossil fuels in transportation sector without suffering from major economic losses. Malaysia with a huge supply of palm oil for biofuels production is intended to implement mandatory biodiesel blends in its transportation sector in 2011 in order to achieve its carbon reduction commitment towards a more sustainable development. This implementation was originally targeted to start in 2009 but had to be postponed due to several obstacles such as expensive cost, lack of sufficient infrastructure and low public demand. On the other hand, Japan is also trying to fulfil its carbon reduction obligation as outlined under Kyoto Protocol with the usage of biofuels to replace fossil fuels in the transportation sector. However, it lacks sufficient biofuels supply to support its high transportation energy demand. In this case study, the mutual cooperation between Malaysia and Japan in the implementation of biofuels in transportation sector will be studied and analysed in order to overcome the challenges presented in both countries. It is hope to ascertain potential cooperation opportunities amongst those two countries to promote biofuels energy as Malaysia is rich in natural resources whilst Japan has the relevant expertise and technology. It is believed that the strengths from one country can help to cover for the weaknesses from the other and vice versa via closer bilateral partnership which will be extremely crucial when dealing with global energy issues. Ultimately, it is hope that this case study will enable both Malaysian and Japanese government to achieve their renewable energy target in domestic transportation sector.  相似文献   

16.
The aim of this paper was to outline a proposed a new brackish water greenhouse desalination unit powered by geothermal energy for the development of arid and relatively cold regions, using Algeria as a case study. Countries which have abundant sea/brackish water resources and good geothermal conditions are ideal candidates for producing fresh water from sea/brackish water. The establishment of human habitats in these arid areas strongly depends on availability of fresh water. The main advantage of using geothermal energy to power brackish water greenhouse desalination units is that this renewable energy source can provide power 24 h a day. This resource is generally invariant with less intermittence problems compared to other renewable resources such as solar or wind energy. Geothermal resources can both be used to heat the greenhouses and to provide fresh water needed for irrigation of the crops cultivated inside the greenhouses. A review of the geothermal potential in the case study country is also outlined.  相似文献   

17.
Photocatalytic H2 generation using semiconductor photocatalysts is considered as a cost-effective and eco-friendly technology for solar to energy conversion; however, the present photocatalysts have been recognized to depict low efficiency. Currently, porous coordination polymers known as metal-organic frameworks (MOFs) constituting flexible and modifiable porous structure and having excess active sites are considered to be appropriate for photocatalytic H2 production. This review highlights current progress in structural development of MOF materials along with modification strategies for enhanced photoactivity. Initially, the review discusses the photocatalytic H2 production mechanism with the concepts of thermodynamics and mass transfer with particular focus on MOFs. Elaboration of the structural categories of MOFs into Type I, Type II, Type III and classification of MOFs for H2 generation into transition metal based, post-transition metal based, noble-metal based and hetero-metal based has been systematically discussed. The review also critically deliberate various modification approaches of band engineering, improvement of charge separation, efficient irradiation utilization and overall efficiency of MOFs including metal modification, heterojunction formation, Z-scheme formation, by introducing electron mediator, and dye based composites. Also, the MOF synthesized derivatives for photocatalytic H2 generation are elaborated. Finally, future perspectives of MOFs for H2 generation and approaches for efficiency improvement have been suggested.  相似文献   

18.
In this study, a fractal model is developed to predict the permeability and liquid water relative permeability of the GDL (TGP-H-120 carbon paper) in proton exchange membrane fuel cells (PEMFCs), based on the micrographs (by SEM, i.e. scanning electron microscope) of the TGP-H-120. Pore size distribution (PSD), maximum pore size, porosity, diameter of the carbon fiber, pore tortuosity, area dimension, hydrophilicity or hydrophobicity, the thickness of GDL and saturation are involved in this model. The model was validated by comparison between the predicted results and experimental data. The results indicate that the water relative permeability in the hydrophobicity case is much higher than in the hydrophilicity case. So, a hydrophobic carbon paper is preferred for efficient removal of liquid water from the cathode of PEMFCs.  相似文献   

19.
Since its establishment in 1996, the nonprofit company Grameen Shakti (GS) has installed almost half a million solar home systems (SHS), 132,000 cookstoves, and 13,300 biogas plants among 3.1 million beneficiaries. They plan to ramp up their expansion so that by 2015, more than 1.5 million SHS are in place along with 100,000 biogas units and 5 million improved cookstoves. This article describes GS’s current activities, the contours of its programs, and likely reasons for its success. It also explores the remaining challenges facing GS and distils common lessons for other energy development assistance projects and programs around the world. After detailing research methods consisting primarily of research interviews and site visits, the article briefly explores the history of GS and summarizes its three most prominent programs. The article then identifies six distinct benefits to their programs—expansion of energy access, less deforestation and fewer greenhouse gas emissions, price savings, direct employment and income generation, improved public health, and better technology—before discussing challenges related to staff retention and organizational growth, living standards, technical obstacles, affordability, tension with other energy programs, political constraints, and awareness and cultural values.  相似文献   

20.
Polymers are the most versatile material in our modern day and age. With certain chemicals and additives (pigments, concentrates, anti-blockers, light transformers (LTs), UV-stabilizers, etc.), they become what we know as plastics. The aim of this review is to provide the reader with an in depth analysis regarding the recovery, treatment and recycling routes of plastic solid waste (PSW), as well as the main advantages and disadvantages associated with every route. Recovery and recycling of PSW can be categorized by four main routes, i.e. re-extrusion, mechanical, chemical and energy recovery. Re-extrusion (primary recycling) utilizes scrap plastics by re-introducing the reminder of certain extruded thermoplastics (mainly poly-α-olefins) into heat cycles within a processing line. When plastic articles are discarded after a number of life cycles, mechanical recycling techniques present themselves as a candidate for utilizing a percentage of the waste as recyclate and/or fillers. Collectively, all technologies that convert polymers to either monomers (monomer recycling) or petrochemicals (feedstock recycling) are referred to as chemical recycling. The technology behind its success is the depolymerization processes (e.g. thermolysis) that can result in a very profitable and sustainable industrial scheme, providing a high product yield and a minimal waste. Nevertheless, due to their high calorific value and embodied energy, plastics are being incinerated solely or in combination with municipal solid waste (MSW) in many developed countries. This review also presents a number of application and technologies currently being used to incinerate plastics. Cement kilns and fluidized beds are the two most common units used to recover energy from PSW or MSW with high PSW content. It is concluded that, tertiary (chemical methods) and quaternary (energy recovery) are robust enough to be investigated and researched in the near future, for they provide a very sustainable solution to the PSW cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号