共查询到20条相似文献,搜索用时 0 毫秒
1.
Tran Nguyen Takao Tsuji Tsutomu Oyama Takuhei Hashiguchi Tadahiro Goda Takao Shinji Shinsuke Tsujita 《IEEJ Transactions on Electrical and Electronic Engineering》2013,8(1):19-27
The introduction of distributed generators (DGs) that can utilize renewable energy is of prime importance to solve the energy and environmental issues. When a distribution network has a large number of DGs, voltage maintenance becomes a serious problem. To solve this problem, we had proposed the ‘voltage profile control method’ using reactive power control of DGs. However, the control is limited to continuous reactive power control so far, and tap control has not been considered. It is important that the conventional voltage control equipment such as the load ratio tap changer (LRT) or step voltage regulator (SVR) is utilized in order to enhance the control efficiency of the voltage profile control method. Therefore, in this paper, we develop a new method that can realize a cooperative work between inverters and tap control of LRT and SVR. The proposed method is tested in 8‐ and 24‐node model systems and its effectiveness is shown. © 2012 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. 相似文献
2.
3.
Takao Tsuji Kohsuke Tomura Tsutomu Oyama Takuhei Hashiguchi Tadahiro Goda Seiji Tange Toshio Nomura 《Electrical Engineering in Japan》2012,179(1):29-39
In a future distribution network, it will be difficult to maintain system voltage because a large number of distributed generators are introduced into the system. The authors have previously proposed a voltage profile control method using power factor control of distributed generators. When all information on the system is available, an ideal stationary solution of control orders to distributed generators is given by an optimization calculation. However, it is difficult to apply optimization control in real time because a long calculation time is required for the optimization. Therefore, it is possible that a voltage change may occur before the power factor control has finished. Thus, in this paper, we develop a new control method which can save the excessive voltage changes by taking into consideration the controlled response time of distributed generators. The proposed method was tested in a 24‐node distribution network model. © 2012 Wiley Periodicals, Inc. Electr Eng Jpn, 179(1): 29–39, 2012; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21231 相似文献
4.
为了实现电压调节和提高供电能力,提出了一种在低压微电网中利用分布式电源(Distributed Generators,DGs)发出的有功来进行电压控制的分布式电压算法。针对低压微电网的线路阻抗特性,分析了电压和有功的关系。由系统线路结构建立通信链路,并对电压超出上下限的母线初始化,计算出所需补偿的有功功率。基于本地信息,利用参数化状态转移矩阵对电压进行修正,并考虑了分布式电源的有功容量限制。通过该算法协调和分配各分布式电源所需承担的功率,共同作用实现电压控制。仿真结果表明该算法能够有效实现电压调节和减小电压偏差,提高电压质量。 相似文献
5.
Yasuhiro Hayashi Shoji Kawasaki Junya Matsuki Shinji Wakao Junpei Baba Masahide Hojo Akihiko Yokoyama Naoki Kobayashi Takao Hirai Kohei Oishi 《Electrical Engineering in Japan》2009,167(3):46-57
Recently, the total number of distributed generators (DGs) such as photovoltaic generation system and wind turbine generation system connected to an actual distribution network has increased drastically. The distribution network connected to many distributed generators must be operated keeping reliability of power supply, power quality, and loss minimization. In order to accomplish active distribution network operation to take advantage of many connections of DGs, a new coordinated operation of distribution system with many connections of DGs is necessary. In this paper, the authors propose a coordinated operation of distribution network system connected to many DGs by using newly proposed sectionalizing switch control, sending voltage control, and computation of available DG connection capability. In order to check the validity of the proposed coordinated operation of distribution system, numerical simulations using the proposed coordinated distribution system operation are carried out in a practical distribution network model. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 167(3): 46–57, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20655 相似文献
6.
Yoshiyuki Kubota Takamu Genji Shinichi Takayama Yoshikazu Fukuyama 《Electrical Engineering in Japan》2005,150(1):8-17
Recently, the number of distributed generators (DGs) connected to distribution systems has been increasing. It is important to know how large a generator output is permitted when the generators are connected to a distribution system with regulation of the line voltage, the line current, and the power factor of the generator connection point. The authors demonstrate differences of maximum output of the DGs caused by various voltage control systems in a short‐length system and a long‐length system by load flow calculation. The voltage regulation systems include the following six types: no control equipment, SVC (Static Var Compensator), existing SVR (Step Voltage Regulator), reverse flow type SVR which operates even in reverse flow, existing SVR and SVC, and reverse flow type SVR and SVC. A synchronous generator is considered as a DG in this paper. The calculation results show that the DG's maximum output is about 3300 kW in a short‐length system and about 540 kW in a long‐length system. However, the DG's maximum output increases to about 3750 kW on installing a SVC, and the SVC's capacity decreases on replacing an existing SVR with a reverse power flow type SVR in the long‐length system. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 150(1): 8–17, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20050 相似文献
7.
《IEEJ Transactions on Electrical and Electronic Engineering》2017,12(6):850-860
The interconnection of distributed generators (DGs) in a power system increases the difficulty of managing the system. The minimization of the voltage deviation by network reconfiguration is an important requirement for dealing with the issue. We had previously developed a reconfiguration technique, named the intelligent flow algorithm (IFA), for determining the optimum or suboptimum network configuration within a short computation time. In the present paper, we propose an extension of IFA, named the extended flow algorithm (EFA), for more effective determination of the optimal network configuration of a distribution system containing massive installations of DGs. EFA is a two‐stage method in which the configuration that produces uniform power supply, referred to as the balanced configuration, is first generated, and then used to seek the optimal configuration using an improved branch exchange approach. Accordingly, EFA is more simplified to improve its computation speed on large‐scale systems. The algorithm was tested by case studies of different test distribution systems in the MATLAB environment, and was confirmed to have high performance to cope with DG installations and large‐scale systems. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. 相似文献
8.
9.
Junji Kondoh Hirohisa Aki Hiroshi Yamaguchi Akinobu Murata Itaru Ishii 《Electrical Engineering in Japan》2006,154(4):16-23
Connection of a large number of the dispersed generators to distribution networks is not easy due to various technical considerations. Thus, we have been trying to devise a concept for future electrical distribution systems with many dispersed generators. In this work, it has been considered that each customer's load and each generator's active and reactive power should be controlled in order to stabilize and optimize the networks. Under this consideration, two control methods for future distribution systems are proposed, a cooperative control and an independent control. We have confirmed experimentally that the voltage regulation ability is higher with the cooperative control than with the independent control, especially in cases of an eccentric load profile in a feeder and a heavy load. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 154(4): 16–23, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20246 相似文献
10.
Olarick Ausavanop Anuwat Chanhome Surachai Chaitusaney 《IEEJ Transactions on Electrical and Electronic Engineering》2014,9(Z1):S17-S27
Distributed generation (DG) may result in voltage fluctuation by changing line flow and reactive power injection, especially DG that generates power from renewable energy resources. To cope with this problem, this paper proposes an optimization process to optimally regulate the system voltage profile to lie close to the desired values by using the adaptive Tabu search (ATS) algorithm. The system voltages will be regulated by using dispatchable DG and voltage control devices, i.e. voltage regulator and capacitor. Moreover, probabilistic load flow calculation by using Monte Carlo simulation is chosen to evaluate the uncertainty of DG powered by renewable energy resources. The number of switching operations of the voltage regulator and capacitor are also accounted for in the optimization constraints, as excessive frequent switching operations can damage these devices. The optimal sizes and locations of dispatchable DGs and capacitors are considered as the optimization variables. The proposed method is demonstrated in an IEEE 34‐bus distribution test system and a modified 21‐bus Provincial Electricity Authority (PEA) system (Thailand). © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. 相似文献
11.
Hiroyuki Hatta Hiromu Kobayashi 《IEEJ Transactions on Electrical and Electronic Engineering》2006,1(3):233-239
Distributed power generators, such as cogenerators and renewable energy systems, have continued to advance and their penetration capacity is increasing. However, they may cause power quality problems in voltage regulation because of the reverse power flow. At present, when the distribution line voltage exceeds the limit value, distributed generators control reactive power to reduce the voltage, and if the reactive power output is not enough, they reduce the active power output. Therefore, an imbalance of active power output between distributed generators may occur because the voltage of generators varies by location and generators at lower voltage locations do not control the reactive power. A power control method for distributed generators needs to be established to solve these problems. In this study, an autonomous reactive power control method of sharing reactive power between distributed generators is proposed. The availability of this method is discussed experimentally and its applicability area is considered analytically by use of a model distribution system. © 2006 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. 相似文献
12.
在传统配电网状态估计中,主要考虑拓扑约束和线性阻抗元件约束。在大量分布式电源接入配电网后,关于负序和零序的控制也相应增加。对于三相不平衡的状态估计,除了线性阻抗元件约束外,还要考虑分布式电源对不平衡分量即负序和零序的约束方程。因此,首先建立了常见的分布式电源在状态估计中的模型,然后提出了基于改进节点法的配电网多相状态估计方法,最后通过算例分析考虑与不考虑分布式电源的模型对状态估计结果的影响。 相似文献
13.
针对含逆变型分布式电源(Inverter Interfaced Distributed Generation, IIDG)的花瓣型配电网的故障定位问题,文中提出了一种基于电气参数的综合故障定位方法,可用于解决三种不同类型的故障问题。对于两相短路故障,采用基于负序电流相位差的故障线路识别方法;针对单相接地故障,基于零序分量推导出测距方程,并利用区段线路长度约束排除虚假根,准确确定实际故障位置;对于对称故障,利用多线路正序电流的相位和幅值来确定故障位置;利用PSCAD/EMTDC系统对所提出的方法在不同故障情景下进行了故障距离和接地电阻测试。结果表明,与其他方法相比,所提方法定位精度更高,在不同故障类型下的定位误差不超过1%,从而验证了该方法在含IIDG的花瓣型配电网中具有更高的精度和抗故障能力。 相似文献
14.
15.
We have proposed a concept model of emergency islanded operation by using distributed generators (DGs) such as photovoltaics, electric vehicles, or batteries, which can provide power to customers via undamaged distribution network in order to develop the resilient power system against large disasters, and it is named Islanded Distribution Network (IDN). Since there is no guarantee that the three‐phase generation system is interconnected to the IDN, the single‐phase DGs that are installed in the distribution network may be treated as main generators in the IDN operation. If the IDN has only single‐phase DGs, it is difficult to regulate the three‐phase voltage within the allowable range and to compensate the unbalance voltage. The aim of this study is to develop the method to supply three‐phase balanced voltage by single‐phase generators in the IDN. First, the operating condition of the generators is proposed for the supply of three‐phase balanced voltage in the IDN model by algebra calculation. The control method for three single‐phase generators has been developed by using the conditions obtained from the derivation of the generators conditions. 相似文献
16.
17.
18.
分布式电源渗透率的快速增加使得低压配电网中出现严重的电压问题,而电动汽车(Electric Vehicle,EV)的广泛应用使得其参与电压控制成为了可能。提出了一种利用电动汽车的电池能量管理和分布式光伏阵列的无功、有功控制,来调节光伏发电渗透率较高的配电网中的电压。考虑到电动汽车电池容量和荷电状态(SoC)的不同,提出基于一致性算法的分布式控制策略来有效利用EV电池的有限存储容量。在此基础上,提出基于分布式光伏组件无功调节和有功调节的本地电压控制策略,并计算分布式光伏的无功与有功控制调节量。通过仿真分析,验证了文中所提的分布式一致性电压协同控制的有效性,可以有效缓解由反向潮流引起的电压升高,并补偿峰值负载导致的电压降落,消除由分布式电源大量接入带来的电压越限问题。 相似文献
19.
Yutaka Sasaki Hiroyuki Kita Eiichi Tanaka Jun Hasegawa 《Electrical Engineering in Japan》2009,167(2):28-37
The authors have proposed the Flexible, Reliable and Intelligent ENergy Delivery System (called “FRIENDS”), which is a new concept for future power distribution systems. Also, a “micro grid” which is a similar concept to FRIENDS has been developed. In a micro grid, an independent distribution system can be constituted by a number of distributed generators. In this paper, FRIENDS, Micro grid, and conventional distribution systems are compared quantitatively in supply reliability and system cost through time sequential Monte Carlo simulations. In addition, for cost evaluation, interruption costs are included to show risk incurred by unsupplied energy. Finally, the authors search for preferable form with install and operation of distributed generators and network composition according to social cost including interruption cost and system cost. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 167(2): 28–37, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20659 相似文献
20.
为了防止大量分布式光伏电源接入配电网后可能引起电压偏差和电压波动越限,建立了负荷和分布式光伏电源引起的电压偏差和电压波动的计算模型。并在此基础上定义了分布式光伏电源极端可接入容量极限的概念,即负荷为0的极端情况下不致引起电压偏差和电压波动问题的分布式光伏电源接入容量极限。推导了6种典型分布情况下线路电压偏差和电压波动不越限时所能允许接入的极端容量极限。针对10 k V典型线路,给出了不同线型下城市配电网和农村配电网中分布式光伏电源安全接入的极端容量极限值。结果表明,分布式光伏电源极端可接入容量极限是保守的限值,只要满足该容量极限,无论分布式光伏电源和负荷的如何分布情况,都不至于对配电网产生不可接受的电压偏差或电压波动。 相似文献