首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
In this paper, we propose a mixed control chart to monitor the process quality using attribute data combined with variable data. The proposed control chart proceeds like an np control chart based on the number of nonconforming parts but requires variable data only when the decision is indeterminate. The control coefficients are determined by considering the in-control and the out-of-control average run lengths for various specified parameters. The extensive tables are provided for the industrial use. The advantages of the proposed control chart are discussed over the traditional np control chart.  相似文献   

4.
The Shewhart X chart (or X chart) is widely used to monitor the mean of a quality characteristic x. This chart decides the process status based on the magnitude of the sample mean x and is effective for detecting large mean shifts. The synthetic chart is also a Shewhart type chart for monitoring the process mean, but it utilises the information about the time interval between two nonconforming samples. Here a sample is nonconforming if its x value falls beyond the predetermined warning limits. Unlike the X chart, the synthetic chart is more powerful to detect small shifts. The applications of the X and synthetic charts cover a wide variety of manufacturing processes and production lines, e.g., the monitoring of the mean values of the inside diameter of a piston-ring, the viscosity of aircraft paint, the resistivity of silicon wafers. This article proposes a combined scheme, the Syn-X chart, that comprises a synthetic chart and an X chart. The results of the performance studies show that the Syn-X chart always outperforms the individual X chart and synthetic chart under different conditions. It is more effective than the X chart and synthetic chart by 47% and 20%, respectively, over the wide range of mean shift values in different experiment runs.  相似文献   

5.
A control chart is a simple yet powerful tool that is extensively adopted to monitor shifts in the process mean. In recent years, auxiliary‐information–based (AIB) control charts have received considerable attention as these control charts outperform their counterparts in monitoring changes in the process parameter(s). In this article, we integrate the conforming run length chart with the existing AIB double sampling (AIB DS) chart to propose an AIB synthetic DS chart for the process mean. The AIB synthetic DS chart also encompasses the existing synthetic DS chart. A detailed discussion on the construction, optimization, and evaluation of the run length profiles is provided for the proposed control chart. It is found that the optimal AIB synthetic DS chart significantly outperforms the existing AIB Shewhart, optimal AIB synthetic, and AIB DS charts in detecting various shifts in the process mean. An illustrative example is given to demonstrate the implementation of the existing and proposed AIB control charts.  相似文献   

6.
The problem of detecting changes in the parameter p in a Bernoulli process with two possible categories for each observation has been extensively investigated in the SPC literature, but there is much less work on detecting changes in the vector parameter p in a multinomial process where there are more than two categories. A few papers have considered the case in which the direction of the change in p is known, but there is almost no work for the important case in which the direction of the change is unknown and individual observations are obtained. This paper proposes a multinomial generalized likelihood ratio (MGLR) control chart based on a likelihood ratio statistic for monitoring p when individual observations are obtained and the direction and size of the change in p are unknown. A set of 2‐sided Bernoulli cumulative sum (CUSUM) charts is proposed as a reasonable competitor of the MGLR chart. It is shown that the MGLR chart has better overall performance than the set of 2‐sided Bernoulli CUSUM charts over a wide range of unknown shifts. Equations are presented for obtaining the control limit of the MGLR chart when there are three or four components in p .  相似文献   

7.
Control charts are developed to make the specific quality measures for a successful production process and follow normal distribution behaviors. But some real-life practices do not match such practices and exhibit some positively skewed behavior like lognormal distribution. The present study has considered this situation and proposed a monitoring control chart based on lognormal process variation using a repetitive sampling scheme. This concept proved better for detecting shifts as quickly as possible, and compared with the existing concept, results are elaborated through extensive tables. The average run lengths and standard deviations of the run lengths are being used as a performance evaluation measures and computed by using Monte Carlo simulations performed in R language. A real-life situation has been discussed in the example section to strengthen the proposed control chart concept in a real-life situation.  相似文献   

8.
An efficient alternative to the S control chart for detecting shifts of small magnitude in the process variability using a moving average based on the sample standard deviation s statistic is proposed. Control limit factors are derived for the chart for different values of sample size and span w. The performance of the moving average S chart is compared to the S chart in terms of average run length. The result shows that the performance of moving average S chart for varying values of w outweigh those of the S chart for small and moderate shifts in process variability.  相似文献   

9.
The variable-dimension T2 control chart (VDT2 chart) was recently proposed for monitoring the mean of multivariate processes in which some of the quality variables are easy and inexpensive to measure while other variables require substantially more effort or expense. The chart requires most of the times that only the inexpensive variables be sampled, switching to sampling all the variables only when a warning is triggered. It has good ARL performance compared with the standard T2 chart, while significantly reducing the sampling cost. However, like the T2 chart, it has limited sensitivity to small and moderate mean shifts. To detect such shifts faster, we developed an exponentially weighted moving average (EWMA) version of the VDT2 chart, along with Markov chain models for ARL calculation, and software (made available) for optimizing the chart design. The optimization software, which is based on genetic algorithms, runs in Windows© and has a friendly user interface. The performance analysis shows the great gain in performance achieved by the incorporation of the EWMA procedure.  相似文献   

10.
11.
This paper presents an application of the sample autocorrelation function to statistical process control where the process data are serially correlated. Two innovative control charts are illustrated: the sample autocorrelation control chart and the group autocorrelation control chart. The important feature is that these control charts will detect shifts in the autocorrelative structure as well as shifts in the mean of the process. The sample autocorrelation function is typically used to identify an appropriate ARIMA model for a time series. The sample autocorrelation function may also be used as the basis of control charts to detect process upsets. Two unique features distingush this application of the sample autocorrelation function to statistical process control. First, the sample autocorrelations are exponentially smoothed estimates. This allows the user to control the sensitivity of the sample autocorrelation control chart. Secondly, the sample autocorrelation control chart is applied to a continuous stream of data—rather than to a static set of data that has been used to fit an ARIMA model.  相似文献   

12.
Control charts are one of the most powerful tools used to detect and control industrial process deviations in statistical process control. In this paper, a moving average control chart based on a robust scale estimator of standard deviation, namely, the sample median absolute deviation (MAD) statistic, for monitoring process dispersion, is proposed. A simulation study is conducted to evaluate the performance of the proposed moving average median absolute deviation (MA‐MAD) chart, in terms of average run length for various distributions. The results show that the moving average MAD chart performs well in detecting small and moderate shifts in process dispersion, especially when the normality assumption is violated. In addition, this chart is very efficient, especially when the quality characteristic follows a skewed distribution. Numerical and simulated examples are given at the end of the paper.  相似文献   

13.
The exponentially weighted moving average (EWMA) control chart is a memory-type chart known to be more efficient in detecting small and moderate shifts in the process parameter. The double EWMA (DEWMA) chart is an extension of the EWMA chart that is more effective than the latter in the detection of small-to-moderate shifts. This paper proposes a new distribution-free (or nonparametric) triple EWMA (TEWMA) control chart based on the Wilcoxon rank-sum (W) statistic to improve the detection ability in the process location parameter. Moreover, a new fast initial response (FIR) feature is added to further improve the sensitivity of the new TEWMA chart. The performance of the proposed TEWMA chart with and without FIR features is compared to those of the existing EWMA and DEWMA W charts. It is observed that the TEWMA chart with and without FIR features is superior to the competing charts in most situations. A real-life illustration is provided to show the application and implementation of the new chart.  相似文献   

14.
In this paper, we propose a new process control chart for monitoring correlated Poisson variables, the EWMA LCP chart. This chart is the exponentially weighted moving average (EWMA) version of the recently proposed LCP chart. The latter is a Shewhart-type control chart whose control statistic is a linear combination of the values of the different Poisson variables (elements of the Poisson vector) at each sampling time. As a Shewhart chart, it is effective at signalling large process shifts but is slow to signal smaller shifts. EWMA charts are known to be more sensitive to small and moderate shifts than their Shewhart-type counterparts, so the motivation of the present development is to enhance the performance of the LCP chart by the incorporation of the EWMA procedure to it. To ease the design of the EWMA LCP chart for the end user, we developed a user-friendly programme that runs on Windows© and finds the optimal design of the chart, that is, the coefficients of the linear combination as well as the EWMA smoothing constant and chart control limits that together minimise the out-of-control ARL under a constraint on the in-control ARL. The optimization is carried out by genetic algorithms where the ARLs are calculated through a Markov chain model. We used this programme to evaluate the performance of the new chart. As expected, the incorporation of the EWMA scheme greatly improves the performance of the LCP chart.  相似文献   

15.
This paper proposes a parameter-free Kullback-Leibler information control chart for monitoring sustained shifts in the process mean of a normally distributed process in phase II. Two plotted statistics are provided. One is based on our backward empirical sequential test, the other is based on the maximum log-likelihood ratio change point method. These two achieve similar performances for the control chart. The performance of the proposed chart is compared with those of the cumulative sum chart, the exponentially weighted moving average chart, and the generalized likelihood ratio (GLR) chart. The results show that our proposed chart and the GLR chart have similar performances. Both can detect a wide range of shifts in the process mean, and neither requires design parameters other than the control limits. The proposed chart outperforms GLR when the size of the shift is below 1.24 standard deviations, while GLR outperforms the proposed chart when the size of the shift is above 1.24 standard deviations.  相似文献   

16.
The exponentially weighted moving average (EWMA), cumulative sum (CUSUM), and adaptive EWMA (AEWMA) control charts have had wide popularity because of their excellent speed in tracking infrequent process shifts, which are expected to lie within certain ranges. In this paper, we propose a new AEWMA dispersion chart that may achieve better performance over a range of dispersion shifts. The idea is to first consider an unbiased estimator of the dispersion shift using the EWMA statistic, and then based on the magnitude of this shift, select an appropriate value of the smoothing parameter to design an EWMA chart, named the AEWMA chart. The run length characteristics of the AEWMA chart are computed with the help of extensive Monte Carlo simulations. The AEWMA chart is compared with some of the existing powerful competitor control charts. It turns out that the AEWMA chart performs substantially and uniformly better than the EWMA‐S2, CUSUM‐S2, existing AEWMA, and HHW‐EWMA charts when detecting different kinds of shifts in the process dispersion. Moreover, an example is also used to explain the working and implementation of the proposed AEWMA chart.  相似文献   

17.
In recent years, the memory‐type control charts—exponentially weighted moving average (EWMA) and cumulative sum (CUSUM)—along with the adaptive and dual control‐charting structures have received considerable attention because of their excellent ability in providing an overall good detection over a range of mean‐shift sizes. These adaptive memory‐type control charts include the adaptive exponentially weighted moving average (AEWMA), dual CUSUM, and adaptive CUSUM charts. In this paper, we propose a new AEWMA chart for efficiently monitoring the process mean. The idea is to first design an unbiased estimator of the mean shift using the EWMA statistic and then adaptively update the smoothing constant of the EWMA chart. The run length profiles of the proposed AEWMA chart are computed using extensive Monte Carlo simulations. Based on a comprehensive comparative study, it turns out that the proposed AEWMA chart performs better than the existing AEWMA, adaptive CUSUM, dual CUSUM, and Shewhart‐CUSUM charts, in terms of offering more balanced protection against mean shifts of different sizes. An example is also used to explain the working of the existing and proposed control charts.  相似文献   

18.
Double sampling (DS) ‐control charts are designed to allow quick detection of a small shift of process mean and provides a quick response in an agile manufacturing environment. However, the DS ‐control charts assume that the process standard deviation remains unchanged throughout the entire course of the statistical process control. Therefore, a complementary DS chart that can be used to monitor the process variation caused by changes in process standard deviation should be developed. In this paper, the development of the DS s‐charts for quickly detecting small shift in process standard deviation for agile manufacturing is presented. The construction of the DS s‐charts is based on the same concepts in constructing the DS ‐charts and is formulated as an optimization problem and solved with a genetic algorithm. The efficiency of the DS s‐control chart is compared with that of the traditional s‐control chart. The results show that the DS s‐control charts can be a more economically preferable alternative in detecting small shifts than traditional s‐control charts. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The majority of the existing literature on simultaneous control charts, i.e. control charting mechanisms that monitor multiple population parameters such as mean and variance on a single chart, assume that the process is normally distributed. In order to adjust and maintain the overall type-I error probability, these existing charts rely largely on the property that the sample mean and sample variance are independent under the normality assumption. Furthermore, the existing charting procedures cannot be readily extended to non-normal processes. In this article, we propose and study a general charting mechanism which can be used to construct simultaneous control charts for normal and non-normal processes. The proposed control chart, which we call the density control chart, is essentially based on the premise that if a sample of observations is from an in-control process, then another sample of observations is no less likely to be also from the in-control process if the likelihood of the latter is no less than the likelihood of the former. The density control chart is developed for normal and non-normal processes where the distribution of the plotting statistic of the density control chart can be explicitly derived. Real examples are given and discussed in these cases. We also discuss how the density control chart can be constructed in cases when the distribution of the plotting statistic cannot be determined. A discussion of potential future research is also given.  相似文献   

20.
以加工"过程"为研究对象,从零件成组加工技术出发,阐述了就如何利用EWMA控制图来进行统计聚类并进行过程质量监控等问题,提出通过统计聚类形成"零件族",对同一"零件族"采用统一的EWMA控制图的应用策略;引入聚类零件族的方差比ρ,利用蒙特卡罗模拟方法,对不同样本数量条件下的统计聚类EWMA控制图性能所产生的影响进行了详细的研究,最后给出了统计聚类的基本原则.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号