首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
The authors have proposed the Flexible Reliable and Intelligent Electric eNergy Delivery System (FRIENDS) as a future electric power distribution system. In order to realize FRIENDS it is indispensable to design the concrete interior structure of the key facility, the Quality Control Center. This paper proposes an interior structure and control schemes for the Quality Control Center from the viewpoint of customized power quality service, which is one of the most important objectives of FRIENDS. The validity of the proposed structure and control schemes is confirmed through transient analysis using PSCAD/EMTDC. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 139(3): 45–52, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.1159  相似文献   

2.
Recently, the worldwide deregulation of the electric power industry is progressing. Further, it is expected that a many distributed generation facilities and energy storage systems will be installed at the end point of the power systems. Therefore, the future power system must be able to cope with these various qualities of power in the deregulated situation. The authors have proposed the FRIENDS (Flexible, Reliable, and Intelligent ENergy Delivery System) concept as a new distribution system that copes with a new framework of the electric power business in the near future. The most typical aspect of FRIENDS is the introduction of new equipment; Quality Control Centers (QCC) between distribution substations and customers. In this paper, the authors propose a concrete interior structure and investigate some control methods for realizing unbundling power quality supply and power conditioning using the proposed UPQC‐type QCC. The effectiveness of the proposed method is confirmed through the instantaneous value analysis using PSCAD/EMTDC. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 146(3): 26–38, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10243  相似文献   

3.
With the wholesale electric power market opened in April 2005, deregulation of the electric power industry in Japan has faced a new competitive environment. In the new environment, Independent Power Producer (IPP), Power Producer and Supplier (PPS), Load Service Entity (LSE), and electric utility can trade electric energy through both bilateral contracts and single‐price auction at the electricity market. In general, the market clearing price (MCP) is largely changed by the amount of total load demand in the market. The influence may cause a price spike, and consequently the volatility of MCP will make LSEs and their customers face a risk of higher revenue and cost. DSM is attractive as a means of load leveling, and has an effect on decreasing MCP at peak load period. Introducing Energy Storage systems (ES) is one DSM in order to change demand profile at the customer side. In the case that customers decrease their own demand due to increased MCP, a bidding strategy of generating companies may be changed. As a result, MCP is changed through such complex mechanism. In this paper the authors evaluate MCP by multi‐agent. It is considered that customer‐side ES has an effect on MCP fluctuation. Through numerical examples, this paper evaluates the influence on MCP by controlling customer‐side ES corresponding to variation of MCP. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 167(3): 36–45, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20658  相似文献   

4.
With the increasing number of dispersed power sources interconnected to the power supply system, power systems can take a form similar to that of a longitudinal system. Also, they can become looped, with both ends of the longitudinal system connected to each other. In the present paper, the steady‐state stability of longitudinal power systems and looped power systems is analyzed by means of the mode analysis method via eigenvalue and eigenvector calculation, and power system stabilization by SMES (Superconducting Magnetic Energy Storage) for looped systems is examined relative to that for longitudinal systems. © 2000 Scripta Technica, Electr Eng Jpn, 133(3): 48–54, 2000  相似文献   

5.
A voltage sag compensating using a micro‐SMES is presented. Based on previous works, we have carried out experiments for voltage sag compensation on the laboratory‐built system in order to validate the proposed minimum energy injection voltage sag compensation algorithm. To improve the compensating performance of the system, two‐degree‐of‐freedom voltage control is proposed. In this paper, the circuit configuration and feedback voltage control system of the compensator are described and the experimental results are reported. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 148(2): 84–92, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10267  相似文献   

6.
In Japan the electricity market will open on April 1, 2004. Electric utility, Power Producer and Supplier (PPS), and Load Service Entity (LSE) will join the electricity market. LSEs purchase electricity based on the Market Clearing Price (:MCP) from the electricity market. LSEs supply electricity to the customers that contracted with the LSEs on a certain electricity price, and one to the customers that introduced Energy Storage System (:ES) on a time‐of‐use pricing. It is difficult for LSEs to estimate whether they have any incentive to promote customers to introduce ES or not. This paper evaluates the reduction of LSEs' purchasing cost from the electricity market and other LSEs' purchasing cost by introducing ES to customers. It is clarified which kind of customers has the effect of decreasing LSEs' purchasing cost and how much MCP of the whole power system the demand‐side energy storage systems change. Through numerical examples, this paper evaluates the possibility of giving the cost merit to both customers with energy storage systems and LSE by using real data for a year's worth of MCP. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 158(1): 22–35, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20447  相似文献   

7.
This paper presents a method to compensate voltage sags with minimum energy injection for a series‐connected voltage restorer using a micro‐SMES. A circuit for extracting the fundamental symmetrical components from sag voltages and a minimum energy injection algorithm is described. Simulations of voltage sag compensation have been carried out using PSCAD/EMTDC for various faults. The simulation results confirm the validity of the proposed method and show the possibility of reducing the size of energy storage devices. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 141(3): 70–80, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10047  相似文献   

8.
This paper describes a maximum power point tracking (MPPT) control method for propeller‐type compact wind power generators with passive self‐pitch‐controlled blades, which quickly makes the output current and voltage converge on the maximum power point based on wind speeds detected from an anemometer. The voltage and current output from these wind power generators vary with wind speeds at locations such as the roofs of buildings. Transient characteristics of the voltage output from compact wind power generators have two modes because of the self‐pitch‐controlled blades: mode I in which the output voltage hardly increases and mode II in which it rapidly increases. Thus, in order to acquire the generated power effectively, irrespective of how the wind speeds may change, a method to perform the MPPT control while searching for mode II is needed. Thus, by judging the mode from the change of the sign of the time differential of the voltage deviation between sampling times, the MPPT control method proposed here makes the output current converge on the maximum point using relationships between the maximum power and optimal current which give the maximum power and the wind speed. Effectiveness of the proposed MPPT control method is verified through simulations and experiments using a wind tunnel. IEEJ Trans 2010 DOI: 10.1002/tee.20609  相似文献   

9.
The energy consumption statistics of buildings shows that cooling takes up a considerable portion of the energy demand. The peak–valley characteristics of cooling demand coincides with that of the electrical load in the microgrid. Thus the management of the cooling demand side can regulate the peak–valley demand and stabilize power fluctuations. This paper proposes a new energy management strategy that reduces the investment and loss of the battery energy storage system (BESS ) by applying ice storage air‐conditioning (ISAC ) to the microgrid. Based on the load characteristics and BESS investment, the capacities of the chillers and the ice tank are analyzed. Penalty functions of ISAC and BESS are designed, according to which the stabilization command is dispatched. Finally, an actual case is analyzed by the proposed strategy, and the results verify the feasibility and effectiveness of the energy management strategy. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

10.
It has been noted that the voltage of connection points rises according to the reverse power flow when grid‐connected photovoltaic systems are concentrated in distribution systems in residential areas. When this happens, the photovoltaic system may control the power generation output to maintain a suitable voltage for the connection point. Designing a demand area power system aiming at free access to a distributed power supply for energy‐effective practical use requires a precise understanding of this problem. When analyzing photovoltaic systems mainly connected to low‐voltage systems, we looked for a method of analysis in which the high‐voltage systems and the low‐voltage single‐phase three‐wire systems are unified. This report concerns use of the indication method between nodes using power flow calculation, for the purpose of developing a technique of analyzing unified high‐voltage systems and low‐voltage single‐phase three‐wire systems. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 147(3): 49–62, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10255  相似文献   

11.
光储微电网的低电压穿越控制策略研究   总被引:5,自引:0,他引:5       下载免费PDF全文
针对微电网低电压穿越问题,基于光储微电网系统提出一种光储协调控制的低电压穿越策略。在低电压期间,光伏系统采用最大功率跟踪控制,储能系统采用恒压控制维持直流母线电压恒定,在储能出力已达功率限值仍不能维持直流母线电压在允许范围内时,光伏系统切换为恒压控制。考虑到光储微电网负荷波动性大的特点,设计了一种适用于光储微电网并具有无功补偿功能的限流控制策略,为电网提供电压支撑,同时避免并网逆变器输出过电流。仿真结果表明,控制系统能够充分利用光伏发电能量、维持直流母线电压的恒定、抑制并网电流过电流并能发出无功功率支撑并网点电压,实现了低电压穿越,验证了该LVRT控制策略的有效性。  相似文献   

12.
This paper proposes a novel method of suppressing the inrush current of transformers. A small‐rated voltage‐source PWM converter is connected in series to the transformers through a matching transformer. As the connected PWM converter serves as a resistor for the source current, no inrush phenomena occurs. The required rating of the PWM converter, which serves as the damping resistor for the inrush phenomena, is 1/400 that of the main transformers in single‐phase circuits. In three‐phase circuits, it is 1/900. The basic principle of the proposed method is discussed. Digital computer simulation is implemented to confirm the validity and excellent practicability of the proposed method using the PSCAD/EMTDC. A prototype experimental model is constructed and tested. The experimental results demonstrate that the proposed method can perfectly suppress the inrush phenomena. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 157(4): 56–65, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20174  相似文献   

13.
The principle concept of microgrid (MG) is to integrate loads and microsources into a controllable system to supply electric power and heat to the user. This study discussed the dynamic characteristics of a grid‐connected MG associated with power conditioning system (PCS) to regulate its power. The investigated system primarily consists of the grid, microsources, lumped static loads, and other components. Detailed models based on matlab /Simulink (MathWorks, headquarters in Natick, Massachusetts, U.S.A.) were developed to cater for the dynamic behavior of the system. Two operational modes were investigated: four‐quadrant operation of PCS and use of PCS to control the power of MG. Simulation results suggest this MG can operate satisfactorily in these operational modes. This study can serve as an important reference for planning and operation of MGs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents the design of a coordinated superconducting magnetic energy storage (SMES) and blade pitch controller (BPC) to stabilize the frequency in a smart‐grid power system. To compensate for such power variations, a SMES that is able to supply and absorb active power quickly can be applied to control the frequency fluctuation. The structure of the controller is that of a first‐order lead–lag compensator. The robustness of the controller is guaranteed by applying an inverse additive perturbation to represent possible unstructured uncertainties in the power system such as variation of system parameters, generating and loading conditions, etc. Genetic algorithm (GA) is applied to solve and achieve the control parameters. Simulation studies have been done to show the control effect and robustness of the proposed SMES and blade pitch in comparison with SMES & Pitch against various disturbances. © 2012 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

15.
In this paper, a new application of superconducting magnetic energy storage (SMES) for diagnosis of power systems is proposed. Basic experiments for measurement of damping coefficient of power systems by use of SMES are carried out in an experimental system with a small generator, artificial transmission lines, and a small SMES. The SMES produces small power disturbances in the power system without affecting its operating conditions. The small power oscillations in the power system due to continuous power disturbances generated by SMES are observed. The relations among the damping coefficient, the power disturbances, and the power change of SMES are discussed for a one-machine infinite-bus system. The damping coefficients of the power system are obtained by investigating the oscillations due to the sinusoidal power changes of the SMES. The possibility of estimation of the steady-state power system stability by monitoring the damping coefficients of an operating power system by the use of SMES can be shown experimentally. © 1997 Scripta Technica, Inc. Electr Eng Jpn, 119(3): 40–48, 1997  相似文献   

16.
Application of a dispersed power supply system consisting of a large‐scale photovoltaic system (PV), a fuel cell (FC), and an electric double layer capacitor (EDLC) is studied in this paper. This system is operated in autonomous mode, taking account of time delay characteristics of FC. The modified Euler type Moving Average Prediction (EMAP) model is improved using short‐time fast Fourier transform (ST‐FFT). The Adaptive Control type EMAP (AC‐EMAP) model is introduced to reduce the capacity of EDLC. This system can meet the multi‐quality electric power requirements of customers, and improve voltage stability and uninterruptible power supply (UPS) function as well. Moreover, the required capacity of EDLC to compensate the fluctuation of both PV output and Load demand is clarified by a simulation based on collaborative operation method by a prediction model using software MATLAB/Simulink. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 156(1): 13–24, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20262  相似文献   

17.
Fault analyses are performed for the interconnecting system between a commercial‐scale subsonic diagonal‐type MHD generator and an ac power system through a line‐commutated inverter. The behavior of the interconnecting system is first examined for the case of single misfiring of one thyristor in the inverter. In this case, the load current increases because the inverter system is short‐circuited. Following the theory of inverter commutation, the load current decreases to the rated value and the MHD generator is restored to the rated condition. Next, the cases of a single‐line ground fault and of a three‐phase short circuit fault are investigated. The line voltage decreases and thus the load currents increase after the fault. This increase of load currents destroys the design‐point flow of the MHD generator. Phase‐control angle control of the inverters is required in order to restore the rated operation of the MHD generator. © 2001 Scripta Technica, Electr Eng Jpn, 136(1): 29–36, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号