首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design of a simple ultrahigh frequency RFID (radio frequency identification) reader antenna that can operate within the North America RFID band (902–928 MHz) is studied. To generate circular polarization (CP) radiation in this band, a novel method of loading two narrow open‐ended slots (slits) into an eccentric annular slot patch is proposed. To allow optimum impedance matching with enhanced CP bandwidth, the radiating patch is loaded to an L‐shaped ground plane. From the experimental results, the proposed antenna can yield an impedance bandwidth (10‐dB return loss) between 650 MHz to 1125 MHz, while good CP bandwidth (3‐dB axial ratio, AR) from 901 MHz to 930 MHz is also attained. Furthermore, gain level and efficiency of more than 7.8 dBic and 90%, respectively, were also measured. By simply removing one of the slits, this proposed antenna can also be modified to operate within the China (840–846 MHz) and European (865–868 MHz) RFID band.  相似文献   

2.
This research proposes a simple economical broadband circularly polarized antenna for universal ultra‐high frequency (UHF) RF identification (RFID) readers. The antenna utilizes a folded plate, a two‐corner truncated parasitic patch, and a ground plane. The folded plate, which is fabricated from one single plate, consists of a two‐corner truncated main patch, a wall patch, and a feed line, where the main patch is perpendicular to the wall patch, which is in turn perpendicular to the feed line. The folded plate enables currents to flow with a phase difference. The simulation results achieved an |S11| < ?15 dB of 805–966 MHz (18% bandwidth), a 3‐dB axial ratio (AR) bandwidth of 834–962 MHz (14% AR bandwidth), and a gain higher than 8.6 dBic. The measured results obtained an |S11| < ?15 dB of 806–970 MHz (18%), a 3‐dB AR bandwidth of 816–963 MHz (16%), and a gain greater than 7.8 dBic. The proposed antenna is applicable for universal UHF RFID readers as it covers the entire operating UHF RFID frequency range of 840–960 MHz. The parametric study and evolution of the proposed antenna are detailed in this research paper as well. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:575–587, 2016.  相似文献   

3.
An aperture coupled microstrip‐line fed antenna (circular patch) with CP radiation is initially investigated. To achieve good CP radiation at 925 MHz UHF RFID frequency, the technique of loading an inverted C‐shaped slit into the circular patch is initially proposed. By further loading an open eccentric‐ring shaped parasitic element around the circular patch, an additional CP frequency can be excited at 910 MHz, and by combining these two CP frequencies, broad CP bandwidth that can cover the entire 902‐928 MHz UHF RFID band is achieved. Because of the parasitic element, the total dimension of proposed antenna is modified to 170 × 170 × 11.4 mm3. From the measured results, the impedance and CP bandwidths of the proposed antenna were 9.4% (859‐944 MHz) and 3.1% (902‐930 MHz). Furthermore, its corresponding peak gain and efficiency are 5.9 dBic and 84.3%, respectively. Further analyses have shown that the proposed antenna can also achieve good CP frequency agility across the desired UHF RFID operating band (902‐928 MHz).  相似文献   

4.
A broadband circularly polarized (CP) circular patch antenna with an L‐shaped ground plane and parasitic element is studied. The use of this L‐shaped ground is to achieve short probe feed connection to the circular patch, while maintaining a certain height between the circular patch and ground plane, so that good impedance matching and bandwidth enhancement can be attained. To achieve CP radiation, two notches are initially loaded diagonally into the circular patch, and to further enhance the CP bandwidth, a novel technique of loading a small size moon‐shaped parasitic element into the notched circular patch is proposed. By doing so, the CP bandwidth of proposed antenna can be tremendously increased by approximately 10%. The experimental results show that the proposed CP antenna can yield impedance bandwidth and CP bandwidth of 835–1150 MHz and 839–968 MHz, respectively, with good gain level of 7.6 dBic. Therefore, this proposed wideband CP antenna can be used for UHF (ultrahigh frequency) RFID (radio frequency identification) reader antenna that operates within the universal RFID bands (840 ? 960 MHz). © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:387–395, 2016  相似文献   

5.
The design of a microstrip‐fed annular‐ring slot antenna (ARSA) with circular polarization (CP) radiation is initially studied. To obtain CP radiation with broad 3‐dB axial ratio (AR) bandwidth that can cover the WiMAX 2.3 GHz (2305–2320 MHz, 2345–2360 MHz) and WLAN 2.4 GHz (2400–2480 MHz) bands, a novel technique of extending an inverted L‐shaped slot from the bottom section of the annular‐ring is proposed. To suppress the harmonic modes induced by the CP ARSA, the technique of integrating a defected ground structure into the annular‐ring slot is further introduced. From the measured results, 10‐dB impedance bandwidth and 3‐dB AR bandwidth of 44.86 and 9.68% were achieved by the proposed harmonic suppressed CP ARSA. Furthermore, average gain and radiation efficiency of ~4.7 dBic and 71%, respectively, were also exhibited across the bands of interest. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:337–345, 2015.  相似文献   

6.
This article proposes an equilateral triangule‐shaped patch antenna for radio frequency identification (RFID) applications in the 900 MHz (902–928 MHz) ultra high frequency (UHF) band. To achieve optimal impedance matching and 10‐dB operating bandwidth at the desired band, the L‐shaped probe‐feed technique was used as the feeding structure of the proposed antenna. Furthermore, a near semicircular notch was also loaded into the patch so that good circularly polarized (CP) radiation can be generated from the proposed patch antenna. By simply shifting the position or radius of this notch, the CP frequency can be varied with ease. Here, 10‐dB impedance bandwidth and 3‐dB axial ratio bandwidth of 25 and 3% were achieved. Furthermore, stable gain variation of approximately 6 dBi was also exhibited across the RFID UHF band. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:580–586, 2014.  相似文献   

7.
This research is concerned with a multiple loop antenna applicable to near field ultra‐high frequency (UHF) radio frequency identification (RFID). The proposed multi‐loop antenna is configured to induce the robust and even magnetic field distributions in the Hx, Hy, and Hz orientations so as to achieve the enhanced readability performances in all directions (i.e., x, y, and z). Simulations were carried out using CST Microwave Studio to determine the impedance bandwidth (|S11|Hx‐, Hy‐, and Hz‐oriented magnetic field distributions. A prototype antenna of 14 cm × 16 cm × 0.6 mm (W × L × H) in overall dimension was subsequently fabricated on an FR4 substrate connected to a coaxial cable. In this research, the Hx‐, Hy‐, and Hz‐oriented magnetic field distributions of the prototype antenna were measured in the x‐axis, y‐axis, and xy plane and are in good agreement with the simulation results. The measured readability performances in the x‐, y‐, and z‐directions in which seven near field UHF RFID tags were deployed unobstructed (i.e., in open air) are respectively 25.27%, 31.73%, and 85.43%. Furthermore, the performances on the antenna readability with the tags attached to the microcentrifuge tubes are 30.55%, 25.90%, and 69.09% for the x‐, y‐, and z‐directions. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:402–417, 2016.  相似文献   

8.
A compact dual ports antenna with high isolation is proposed for handheld radio frequency identification (RFID) reader, which is rarely reported in open literatures. Different with conventional handheld RFID reader antenna with single port, the proposed antenna transmits and receives signal separately. The proposed antenna operating with full duplex mode can enhance effectively sensitivity of reader, as the strong transmitting signal of reader with single port is usually highly coupled with weak receiving backscatter signal of tag. The antenna utilizes aperture coupled patch structure that occupies less volume and provides further space‐saving efficiency. The height of the proposed antenna is only 5.1 mm and the volume of that is 80 ×80 × 5.1 mm3, which is easy to integrate in handheld RFID readers. The antenna uses four symmetric coupling apertures to excite two orthogonal modes for dual polarized operation. High isolation of around ?35 dB is obtained by proper arrangement of the length and position of the coupling apertures. The maximum measured return loss is ?39 dB at 2.4 GHz and isolation is ?47 dB at 2.4 GHz. The antenna is suitable for applications in handheld RFID readers. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:548–555, 2015.  相似文献   

9.
This article initially proposes a directly‐fed circular patch antenna with L‐shaped ground plane for Radio Frequency Identification (RFID) applications in the 900 MHz (902?928 MHz) ultrahigh frequency (UHF) band. To achieve circularly polarized (CP) radiation, two arc‐shaped notches are loaded into the main patch. To enhance the CP bandwidth so that the proposed antenna can also cover the UHF RFID band for Europe (866?869 MHz), a parasitic element is printed besides the main patch. Experimental measurements show that the 10‐dB return loss bandwidth of the proposed antenna was 30.95% (833?1138 MHz) and its corresponding 3‐dB axial ratio bandwidth was 8.95% (865?946 MHz). Good gain and radiation efficiency of more than 7 dBic and 90%, respectively, were also exhibited across the two desired UHF RFID bands. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:681–687, 2015.  相似文献   

10.
In this article, a dual‐antenna structure is presented for UHF RFID tag. The proposed structure is made of two L‐shaped strip antennas along with a cross‐shaped slot loaded patch. One antenna is exclusively used for receiving and harvesting full energy with complex conjugate of tag chip, whereas another used as backscatter to enhance maximum differential radar cross section with purely real input impedance, which results in the enhancement of read range. Further, electromagnetic band gap structure is used around the dual‐antenna structure to increase the gain which results in improved read range. The proposed antennas are fabricated and the S‐parameters are measured with the help of differential probe technique. Simulation and measurement results are found in good agreement. The performance of the proposed antenna is also investigated when it placed on different materials such as metal, wood, glass, and plastic. The study shows that the read range of antenna increases considerably when it is mounted on a metallic surface, while the maximum performance is observed when the antenna is attached on a glass surface with highest relative permittivity. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:619–628, 2015.  相似文献   

11.
An antenna made of a graphene‐based film with organic polyimide precursor of high conductivity 1.1 × 106 S m?1 and thickness 30 μm, operating in the ultrahigh frequency (UHF) band for radio frequency identification applications is presented in this article. The antenna is optimized to have a conjugate match to the impedance of the chip by tuning the design parameters. Tags are fabricated and tested using the designed antenna, which are shown to have realized gain above ?1.5 dBi and radiation efficiency beyond 90% in the whole UHF band from 860 to 960 MHz. The read range of proposed tag is greater than 12.3 m over the entire UHF band with a maximum value of 14 m at 920 MHz. In addition, the flexibility of the tags is demonstrated. After 2000 cycles of bending and stretching, the read range only decreases by 4.5 m comparing to the initial state at 915 MHz.  相似文献   

12.
This article has proposed a circularly polarized dual‐band antenna with unidirectional pattern operating at the bandwidth frequencies of 920–925 MHz and 2.40–2.48 GHz for radiofrequency identification (RFID) readers. The proposed antenna structure is of a radiating patch with a single feeder and two pairs of plano convex and concave slots. This work has innovated and utilized the convex and concave slotting technique to generate the circular polarization. The simulated results showed that the dual‐band antenna is of circular polarization (CP) and unidirectional radiation pattern with the 3 dB axial ratio and the respective gains of 1.31 and 1.36 dBic for the experimental lower and upper bandwidth frequencies. An antenna prototype was subsequently fabricated and tests performed. The simulated and measured results are in good agreement, rendering the proposed dual‐band antenna with plano convex and concave slots suitably applicable to the ultrahigh frequency and microwave RFID readers.  相似文献   

13.
A modified electric‐field‐coupled (MELC) resonator featuring negative permittivity is proposed to enhance the inter‐element isolation of a circularly polarized (CP) patch antenna array operated at Chinese compass navigation satellite system (CNSS) downlink band. The resonator comprises two capacitive gaps and a common inductive strip connected to the ground plane by two metal vias. A suspended microstrip line excitation is employed to efficiently design and investigate the MELC resonator whose constitutive parameters are subsequently extracted. A dual‐element CNSS antenna array has been prototyped and measured. The experimental results demonstrate that under the assistance of the proposed MELC resonator, a mutual coupling reduction of 15 dB has been achieved while maintaining good impedance matching and CP radiation performance. Details of the design considerations along with simulation and measurement results are presented and discussed.  相似文献   

14.
This article presents a simple design of circularly polarized (CP) antenna with low profile and wideband operation characteristics. To achieve these desirable features, a truncated corner squared patch is chosen as primary radiating source and surrounded by periodic metallic plates for bandwidth enhancement. Notably, all the radiating elements are designed on a single layer of substrate using printed circuit techniques, which significantly reduces the design complexity. The final prototype with overall size of 0.60λo × 0.60λo × 0.05λo (λo is free‐space wavelength at the center operating frequency) was fabricated and tested. Measured results show that the proposed antenna has wide operation bandwidth of 19.7% (5.1‐6.2 GHz). Additionally, broadside gain ranging from 5.0 to 6.9 dBic is also attained within the operating band. In comparison with the other reported antennas in literature, the proposed one has the simplest design architecture with competitive operating bandwidth.  相似文献   

15.
This article describes a novel aperture‐coupled feed, for the excitation of a cavity‐backed quad‐slot antenna with circular polarization. Firstly, a quad‐slot cavity‐backed antenna with linear polarization (LP) is proposed. Then, a novel aperture‐coupled feed, which is composed of a cross‐shaped coupling aperture and a T‐shaped feeding microstrip line, will be applied to this LP antenna. By differing the lengths of the four radiation slots together with the novel aperture‐coupled feed, 90° phase difference and equal magnitude between the radiations from the two pairs of slots can be generated. As a result, a good performance of axial ratio will be achieved for the proposed antenna. A prototype is fabricated at Ka band for a demonstration. Investigations show that the antenna can present a minimum axial ratio (AR) of only about 0.37 dB, as well as a fractional AR bandwidth of about 0.94%. A relative high gain of 6.9 dBic at 32.1 GHz is also achieved for the prototype. The proposed substrate integrated cavity backed antenna with circularly polarization has great potential to be integrated into millimeter‐wave transceiver modules. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:588–594, 2016.  相似文献   

16.
This paper presents a broadband dual‐polarized omnidirectional antenna with a simple feeding structure. It consists of a monopolar patch element for vertically linear polarization (VP) and a circular printed‐dipole array for horizontally linear polarization (HP). The monopolar patch antenna is loaded with shorting vias and coupled ring in order to broaden the VP bandwidth, nevertheless keeping a low profile. The printed dipoles with integrated balun are arranged on a circular substrate and incorporated with a 1‐to‐4 power divider for achieving the broadband HP omnidirectional radiation. One of the key features is to replace a shorting‐via in the monopolar patch by the coaxial line of the HP element, allowing a simple configuration and not affecting the VP radiation. The final design with a profile of 0.28λmin has been fabricated and measured. The measurements result in an overlapped impedance bandwidth of 25.4% (2.2‐2.84 GHz) and port‐to‐port isolation of >33 dB. Also, the antenna achieves the peak gain values of 8.0 and 5.6 dBi for the VP and HP radiations, respectively.  相似文献   

17.
A low profile circularly polarized (CP) antenna with reconfigurable polarization is designed and presented, which can radiate omnidirectional patterns that can be switched between left‐hand circularly polarized (LHCP) and right‐hand circularly polarized (RHCP). A pair of arc‐shaped complementary dipoles is acted as reconfigurable elements by bridging four pin diodes at the dipole arced arms. A meander phase shift line is employed to connected the arc dipole arms and plate cavity to adjust the phase relationship of two sources. The proposed antenna exhibits the omnidirectional radiation pattern by combining six identical elements placed in a circular array configuration. 24 p‐i‐n diodes are exploited to six elements, by manipulating the dc bias voltage across the diodes, the polarization state of the antenna can be switched. The patterns of the antenna are similar to that of a dipole, but its size is only about Φ0.87 × 0.029λ0 at 5.8 GHz. The overlapped bandwidth of measured 3‐dB axial ratio (AR) and 10‐dB return loss is 5.724‐5.87 and 5.738‐5.91 GHz for two polarization states, which are right on the target of ISM band. It can be well adapted to medical diagnosis systems.  相似文献   

18.
A dual mode square‐ring defected ground waveguide (SR‐DGW) with defected square patch is first proposed to excite a single‐feed dual mode circularly polarized (CP) patch antenna, which can improve the impedance bandwidth and achieve the CP radiation pattern. The defected square patch is called the perturbation element. By optimizing the size of the perturbation, the degenerate modes of the dual mode SR‐DGW are split and their orthogonal modes can be excited simultaneously. Due to the dual mode of the SR‐DGW, the TM01 mode, and TM10 mode of the square patch antenna are excited simultaneously, which can improve the impedance bandwidth of the antenna. Meanwhile, owing to the orthogonal modes, CP radiation pattern of the antenna is obtained. Then, for a better impedance matching, an L‐shaped spurline embedded in the feedline is introduced. The simulated and measured results show a good performance of the proposed antenna. The measured ?10 dB impedance bandwidth is 10.4% (3.56 GHz‐3.95 GHz). The measured 3 dB axial ratio bandwidth is 5.36% (3.63 GHz‐3.83 GHz). Detailed designs and experiments are described and discussed.  相似文献   

19.
A circularly polarized beam‐steering antenna array with Butler matrix is designed in this letter for ultra‐high frequency radio frequency identification applications. To achieve the identification of the fast‐moving tag groups, a 3 × 4 Butler matrix is utilized to switch the radiation directions at ?25°, 0°, and +25°, respectively. Besides, series‐fed patch antenna element is designed and the 1 × 4 antenna array is built with element rotation for a good polarization performance. Finally, the proposed antenna system is fabricated and the identification area and radiation performance are tested.  相似文献   

20.
In this paper, a novel broadband dual‐polarization patch antenna is proposed. Antisymmetric Γ feeding network is applied to excite the radiating patch etched on the upper side of the horizontal substrate, which could minimize the undesired radiation from the probe and extend the impedance bandwidth. For verifying the proposed approach, a prototype is fabricated and measured, the simulated and measured results show the antenna has a wide impedance bandwidth of 48% (1.66‐2.71 GHz) for S11 < ?10 dB, as well as stable radiation gain around 9.5 dBi with low cross‐polarization. In addition, the total height of the antenna is only 0.17 λ0 ( λ0 is the free space wavelength of central frequency) and high port‐to‐port isolation is better than 30 dB. The characteristics of the proposed antenna illustrate it can be an indication for a micro base station in the mobile communication system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号