共查询到20条相似文献,搜索用时 0 毫秒
1.
随着人工智能技术的发展,深度学习技术在人脸识别、行人检测、无人驾驶等领域得到了广泛的应用.而目标检测作为机器视觉中最基本、最具有挑战性的问题之一,近年来受到了广泛的关注.针对目标检测特别是小目标检测问题,归纳了常用的数据集和性能评价指标,并对各类常见数据集的特点、优势及检测难度进行对比,系统性地总结了常用的目标检测方法... 相似文献
2.
基于深度学习的目标检测算法研究综述 总被引:1,自引:0,他引:1
传统的目标检测算法主要依赖于人工选取的特征来对物体进行检测。人工提取的特征对主要针对某些特定对象,比如有的特征适合做边缘检测,有的适合做纹理检测,不具有普遍性。近年来,深度学习蓬勃发展,在计算机视觉领域比如图像分类、目标检测、图像语义分割等方面取得了重大的进展。深度学习作为一种特征学习方法能够自动学习到目标的有用特征,避免了人工提取特征,同时能够保证良好的检测效果。本文首先介绍基于深度学习的目标检测算法研究进展,其次总结目标检测算法中常见的难题与解决措施,最后对目标检测算法的可能发展方向进行展望。 相似文献
3.
弱光图像增强旨在使隐藏在黑暗中的信息可见,以提高图像质量,在夜间目标检测和行为识别等计算机视觉任务中广泛应用。首先,从有监督和无监督两个角度出发,梳理了基于深度学习的弱光图像增强代表性算法,结合实现原理分析了其优缺点。其次,总结了常用的训练数据集和测试数据集。最后,讨论了目前已有算法存在的问题和未来可能的发展趋势。 相似文献
4.
在R-CNN框架提出后,基于深度学习的目标检测框架逐渐成为主流,可分为基于候选窗口和基于回归两类。近两年来,在Faster R-CNN、YOLO、SSD等经典的基于深度学习目标检测框架的基础上,出现了大量的优秀框架。根据优化方法对近几年提出的框架进行了梳理和总结。在PASCAL_VOC和MS COCO等主流测试集上对目标检测方法的性能及优缺点进行了对比分析。讨论了目标检测领域当前面临的困难与挑战,对可能的发展方向进行了展望。 相似文献
5.
基于深度学习的目标检测技术综述 总被引:2,自引:0,他引:2
目标检测是计算机视觉领域中的研究热点.近年来,目标检测的深度学习算法有突飞猛进的发展.基于深度学习的目标检测算法大致可分为基于候选区域和基于回归两大类.基于候选区域的目标检测算法精度高,但是结构复杂,检测速度较慢.而基于回归的目标检测算法结构简单、检测速度快,在实时目标检测领域有较高的应用价值,然而检测精度相对略低.本文总结了基于深度学习的目标检测主流算法,并分析了相关算法的优缺点和应用场景.最后根据深度学习的目标检测算法中存在的困难和挑战,对未来的发展趋势做了思考和展望. 相似文献
6.
现有的目标检测算法,对大目标以及中目标的检测已具有较高的准确率,然而由于小目标在图像中的像素以及可利用的特征较少等原因,导致小目标的检测精度相较于大目标而言过低。通过融合特征层,小目标的检测已取得了不错的效果,但仍存在对于微小目标的定位等问题。基于此,解释了小目标的定义,指出了导致小目标检测精度低的五点原因。将近几年最新进展以及过往经典的小目标检测优化方法按照大致原理从多尺度特征、评估指标、超分辨率等方面进行叙述。归纳了针对特定场景下的小目标检测:航空遥感图像以及人脸行人的检测方法。总结并提出了未来小目标检测可能的研究方向。 相似文献
7.
基于深度学习的目标检测算法综述 总被引:2,自引:0,他引:2
传统目标检测算法大多基于滑动窗口和人工特征提取,存在计算复杂度高和在复杂场景下鲁棒性差的缺点。近年来,研究人员将深度学习技术应用于目标检测领域,显著提高了算法性能。相比传统算法,基于深度学习的目标检测算法具有速度快、准确性高和在复杂条件下鲁棒性强的优点。从评价指标、公开数据集、传统算法框架等方面对目标检测任务进行阐述,按照是否存在显式的区域建议和是否定义先验锚框两种分类标准,对现有基于深度学习的目标检测算法进行分类,分别介绍算法的演进路线并总结算法机制、优势、局限性及适用场景。在此基础上,分析对比代表性算法在公开数据集中的表现,并对基于深度学习的目标检测的未来研究方向进行展望。 相似文献
8.
目标检测是高级视觉研究领域的重要前提,是计算机视觉研究的核心问题.深度学习拥有强大的自学习能力,将其运用至目标检测领域能够在一定程度上弥补了传统检测方法的不足.首先介绍了传统目标检测方法面临的困境;然后对两阶段深度学习算法和单阶段深度学习算法分别进行介绍;最后对基于深度学习的目标检测算法的发展进行总结,并对未来前景进行... 相似文献
9.
10.
深度学习在目标视觉检测中的应用进展与展望 总被引:2,自引:0,他引:2
目标视觉检测是计算机视觉领域的一个重要问题,在视频监控、自主驾驶、人机交互等方面具有重要的研究意义和应用价值.近年来,深度学习在图像分类研究中取得了突破性进展,也带动着目标视觉检测取得突飞猛进的发展.本文综述了深度学习在目标视觉检测中的应用进展与展望.首先对目标视觉检测的基本流程进行总结,并介绍了目标视觉检测研究常用的公共数据集;然后重点介绍了目前发展迅猛的深度学习方法在目标视觉检测中的最新应用进展;最后讨论了深度学习方法应用于目标视觉检测时存在的困难和挑战,并对今后的发展趋势进行展望. 相似文献
11.
随着深度学习的不断发展,基于深度学习的显著性目标检测已经成为计算机视觉领域的一个研究热点.首先对现有的基于深度学习的显著性目标检测算法分别从边界/语义增强、全局/局部结合和辅助网络三个角度进行了分类介绍并给出了显著性图,同时对三种类型方法进行了定性分析比较;然后简单介绍了基于深度学习的显著性目标检测常用的数据集和评估准... 相似文献
12.
目标检测是计算机视觉的重要研究方向之一,旨在准确识别图像中目标的位置和类别,因其较高的准确性,受到研究人员的广泛关注。近年来,计算机技术快速发展,相对于传统的目标检测算法,基于深度学习的目标检测算法的优势逐渐凸显,该算法精度高、实时性好。本文介绍了几种经典的两阶段目标检测算法,对其优缺点进行了比较,并对未来两阶段目标检测算法的发展进行了展望。 相似文献
13.
目标检测是计算机视觉的一个重要研究方向,其目的是精确识别给定图像中特定目标物体的类别和位置.近年来,深度卷积神经网络(Deep Convolutional Neural Networks,DCNN)所具有的特征学习和迁移学习能力,在目标检测算法特征提取、图像表达、分类与识别等方面取得了显著进展.介绍了基于深度学习目标检... 相似文献
14.
目标检测是当下计算机视觉领域的研究热点,随着深度学习的发展,基于深度学习的目标检测算法的应用越来越多,性能也不断被提升,通过总结目标检测过程中遇到的常见难题以及相应的改进方法,梳理了基于深度学习的目标检测方法的最新研究进展,重点针对基于深度学习目标检测算法的两大类型进行综述。此外还从注意力机制、轻量型网络、多尺度检测等方面对目标检测算法的最新改进思路进行总结梳理。针对当前目标检测领域存在的问题,对其未来的发展趋势进行展望,并提出可行的解决方案,以期为该领域后续的研究工作提供可借鉴的思路和方向。 相似文献
16.
17.
在高空电力检修作业中会出现工人未按规定佩戴安全带的情况,存在严重的安全隐患。为此提出基于深度学习的安全带佩戴检测方法,针对深度学习中存在的样本依赖与超参数敏感问题,引入迁移学习以及群优化算法。首先通过重构预训练残差网络的卷积层与全连接层提出三种不同Fine-tuning迁移学习方法,再提出差分动态哈里斯鹰优化算法对三种方法构造的模型在自构建数据集上训练并进行超参数寻优,最后将超参数配置的模型应用到安全带佩戴检测中。仿真结果证明,差分动态哈里斯鹰算法可以实现较好的超参数寻优效果,并且在数据集较少的情况下该方法也能实现较高准确率的检测效果。 相似文献
18.
随着网络技术和人工智能技术的不断发展,恶意代码对网络空间安全的威胁日益增加,对社会经济、国家安全构成严重威胁。恶意程序数量级呈指数增加大大增加了恶意代码分析的工作量,传统的恶意代码检测方式难以应对当下日益复杂的网络空间环境。本文提出了一种面向深度迁移学习的恶意代码可视化检测,基于计算机视觉技术将恶意代码进行可视化操作,并利用深度迁移学习和目标检测技术,对恶意代码相关特征片段进行检测分类。实验结果同样也表明,基于目标检测和计算机视觉技术,进行恶意代码可视化检测分析的方法在检测准确率、检测速度以及识别能力等方面较传统的恶意代码分类方法都表现出了更优异的性能。 相似文献
19.
目标检测是计算机视觉研究领域的核心问题和最具挑战性的问题之一,随着深度学习技术的广泛应用,目标检测的效率和精度逐渐提升,在某些方面已达到甚至超过人眼的分辨水平.但是,由于小目标在图像中覆盖面积小、分辨率低和特征不明显等原因,现有的目标检测方法对小目标的检测效果都不理想,因此也诞生了很多专门针对提升小目标检测效果的方法.... 相似文献
20.
目标检测是计算机视觉中的核心任务之一,在智能视频监控、自动化监测、工业检测等领域应用广泛。近些年来,随着深度学习的快速发展,基于深度卷积神经网络的目标检测算法逐渐替代了传统的目标检测算法,成为了该领域的主流算法。介绍了目标检测算法的常用数据集和性能评价指标,介绍了卷积神经网络的发展,重点分析比较了两阶段目标检测算法和单阶段目标检测算法,展望了基于深度卷积神经网络的目标检测算法未来的发展。 相似文献