首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Existing methods for process scheduling can be broadly classified as network‐based or sequential. The former are used to address problems where different batches of the same or different tasks are freely mixed or split, whereas the latter are used to address problems where batch mixing/splitting is not allowed. A framework is proposed that allows us to: (1) express scheduling problems in facilities that consist of network and sequential, as well as continuous subsystems, (2) formulate mixed‐integer programming (MIP) scheduling models for such problems, and (3) solve the resulting MIP formulations effectively. The proposed framework bridges the gap between network and sequential approaches, thereby addressing the major formulation challenge in the area of process scheduling, namely, the development of a framework that can be used to address a wide spectrum of problems. © 2010 American Institute of Chemical Engineers AIChE J, 57: 695–710, 2011  相似文献   

2.
We present a framework for the efficient representation, generation, and modeling of superstructures for process synthesis. First, we develop a new representation based on three basic elements: units, ports, and conditioning streams. Second, we present four rules based on “minimal” and “feasible” component sets for the generation of simple superstructures containing all feasible embedded processes. Third, in terms of modeling, we develop a modular approach, and formulate models for each basic element. We also present a canonical form of element models using input/output variables and constrained/free variables. The proposed methods provide a coherent framework for superstructure‐based process synthesis, allowing efficient model generation and modification. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3199–3214, 2016  相似文献   

3.
An algorithm is presented for identifying the projection of a scheduling model's feasible region onto the space of production targets. The projected feasible region is expressed using one of two mixed‐integer programming formulations, which can be readily used to address integrated production planning and scheduling problems that were previously intractable. Production planning is solved in combination with a surrogate model representing the region of feasible production amounts to provide optimum production targets, while a detailed scheduling is solved in a rolling‐horizon manner to define feasible schedules for meeting these targets. The proposed framework provides solutions of higher quality and yields tighter bounds than previously proposed approaches. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

4.
5.
Scheduling of crude oil operations is a critical and complicated component of overall refinery operations, because crude oil costs account for about 80% of the refinery turnover. Moreover, blending with less expensive crudes can significantly increase profit margins. The mathematical modeling of blending different crudes in storage tanks results in many bilinear terms, which transforms the problem into a challenging, nonconvex, and mixed‐integer nonlinear programming (MINLP) optimization model. Two primary contributions have been made. First, the authors developed a novel unit‐specific event‐based continuous‐time MINLP formulation for this problem. Then they incorporated realistic operational features such as single buoy mooring (SBM), multiple jetties, multiparcel vessels, single‐parcel vessels, crude blending, brine settling, crude segregation, and multiple tanks feeding one crude distillation unit at one time and vice versa. In addition, 15 important volume‐based or weight‐based crude property indices are also considered. Second, they exploited recent advances in piecewise‐linear underestimation of bilinear terms within a branch‐and‐bound algorithm to globally optimize the MINLP problem. It is shown that the continuous‐time model results in substantially fewer bilinear terms. Several examples taken from the work of Li et al. are used to illustrate that (1) better solutions are obtained and (2) ε‐global optimality can be attained using the proposed branch‐and‐bound global optimization algorithm with piecewise‐linear underestimations of the bilinear terms. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

6.
We address short‐term batch process scheduling problems contaminated with uncertainty in the data. The mixed integer linear programming (MILP) scheduling model, based on the formulation of Ierapetritou and Floudas, Ind Eng Chem Res. 1998; 37(11):4341–4359, contains parameter dependencies at multiple locations, yielding a general multiparametric (mp) MILP problem. A proactive scheduling policy is obtained by solving the partially robust counterpart formulation. The counterpart model may remain a multiparametric problem, yet it is immunized against uncertainty in the entries of the constraint matrix and against all parameters whose values are not available at the time of decision making. We extend our previous work on the approximate solution of mp‐MILP problems by embedding different uncertainty sets (box, ellipsoidal and budget parameter regulated uncertainty), and by incorporating information about the availability of uncertain data in the construction of the partially robust scheduling model. For any parameter realization, the corresponding schedule is then obtained through function evaluation. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4184–4211, 2013  相似文献   

7.
Integration of scheduling and control involves extensive information exchange and simultaneous decision making in industrial practice (Engell and Harjunkoski, Comput Chem Eng. 2012;47:121–133; Baldea and Harjunkoski I, Comput Chem Eng. 2014;71:377–390). Modeling the integration of scheduling and dynamic optimization (DO) at control level using mathematical programming results in a Mixed Integer Dynamic Optimization which is computationally expensive (Flores‐Tlacuahuac and Grossmann, Ind Eng Chem Res. 2006;45(20):6698–6712). In this study, we propose a framework for the integration of scheduling and control to reduce the model complexity and computation time. We identify a piece‐wise affine model from the first principle model and integrate it with the scheduling level leading to a new integration. At the control level, we use fast Model Predictive Control (fast MPC) to track a dynamic reference. Fast MPC also overcomes the increasing dimensionality of multiparametric MPC in our previous study (Zhuge and Ierapetritou, AIChE J. 2014;60(9):3169–3183). Results of CSTR case studies prove that the proposed approach reduces the computing time by at least two orders of magnitude compared to the integrated solution using mp‐MPC. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3304–3319, 2015  相似文献   

8.
A novel efficient agent‐based method for scheduling network batch processes in the process industry is proposed. The agent‐based model is based on the resource‐task network. To overcome the drawback of localized solutions found in conventional agent‐based methods, a new scheduling algorithm is proposed. The algorithm predicts the objective function value by simulating another cloned agent‐based model. Global information is obtained, and the solution quality is improved. The solution quality of this approach is validated by detailed comparisons with the mixed‐integer programming (MIP) methods. A solution close to the optimal one can be found by the agent‐based method with a much shorter computational time than the MIP methods. As a scheduling problem becomes increasingly complicated with increased scale, more specifications, and uncertainties, the advantages of the agent‐based method become more evident. The proposed method is applied to simulated industrial problems where the MIP methods require excessive computational resources. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2884–2906, 2013  相似文献   

9.
Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We use an algorithm that uses process network and customer demand information to formulate powerful valid inequalities that substantially improve the solution process. In particular, we extend the ideas recently developed for discrete‐time formulations to continuous‐time models and show that these tightening methods lead to a significant decrease in computational time, up to more than three orders of magnitude for some instances. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4461–4467, 2013  相似文献   

10.
Online integration of scheduling and control is crucial to cope with process uncertainties. We propose a new online integrated method for sequential batch processes, where the integrated problem is solved to determine controller references rather than process inputs. Under a two‐level feedback loop structure, the integrated problem is solved in a frequency lower than that of the control loops. To achieve the goal of computational efficiency and rescheduling stability, a moving horizon approach is developed. A reduced integrated problem in a resolving horizon is formulated, which can be solved efficiently online. Solving the reduced problem only changes a small part of the initial solution, guaranteeing rescheduling stability. The integrated method is demonstrated in a simulated case study. Under uncertainties of the control system disruption and the processing unit breakdown, the integrated method prevents a large loss in the production profit compared with the simple shifted rescheduling solution. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1654–1671, 2014  相似文献   

11.
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usual y run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non-linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-I ) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta-tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model.  相似文献   

12.
朱振兴  卫宏远  杨华 《化工进展》2006,25(12):1504-1507
提出一种用于间歇生产的多产品化工厂排序的多目标优化的混合整数非线性规划(MINLP)模型,其目标函数同时考虑了总生产时间最短和能耗最小的影响,定义了关于过程能耗的影响因子及决策因子,用以对总生产时间和能耗的影响进行权衡。采用改进的模拟退火算法(SA)对具有不同决策因子和能耗影响因子情况下的算例进行了求解,结果表明,该模型能够较好地反映能耗因素在多产品厂排序问题中的影响,使排序结果达到生产时间和能耗影响的综合最优。  相似文献   

13.
The concept of cryogenic energy storage (CES) is to store energy in the form of liquid gas and vaporize it when needed to drive a turbine. Although CES on an industrial scale is a relatively new approach, the technology is well known and essentially part of any air separation unit that utilizes cryogenic separation. In this work, the operational benefits of adding CES to an existing air separation plant are assessed. Three new potential opportunities are investigated: (1) increasing the plant's flexibility for load shifting, (2) storing purchased energy and selling it back to the market during higher‐price periods, and (3) creating additional revenue by providing operating reserve capacity. A mixed‐integer linear programming scheduling model is developed and a robust optimization approach is applied to model the uncertainty in reserve demand. The proposed model is applied to an industrial case study, which shows significant potential economic benefits. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1547–1558, 2015  相似文献   

14.
We present a framework for the formulation and solution of continuous process scheduling problems. We focus on modeling transient operations such as startups, shutdowns, and transitions between steady states. First, we show how the concept of processing tasks can be generalized to represent continuous processes, including their transient operations. Second, we discuss how to systematically calculate the parameters describing material consumption/production and utility consumption during transient operations. Finally, we present new mixed-integer linear programming formulations for the scheduling of continuous chemical production.  相似文献   

15.
A novel two‐stage adaptive robust optimization (ARO) approach to production scheduling of batch processes under uncertainty is proposed. We first reformulate the deterministic mixed‐integer linear programming model of batch scheduling into a two‐stage optimization problem. Symmetric uncertainty sets are then introduced to confine the uncertain parameters, and budgets of uncertainty are used to adjust the degree of conservatism. We then apply both the Benders decomposition algorithm and the column‐and‐constraint generation (C&CG) algorithm to efficiently solve the resulting two‐stage ARO problem, which cannot be tackled directly by any existing optimization solvers. Two case studies are considered to demonstrate the applicability of the proposed modeling framework and solution algorithms. The results show that the C&CG algorithm is more computationally efficient than the Benders decomposition algorithm, and the proposed two‐stage ARO approach returns 9% higher profits than the conventional robust optimization approach for batch scheduling. © 2015 American Institute of Chemical Engineers AIChE J, 62: 687–703, 2016  相似文献   

16.
Mixed‐integer linear fractional program (MILFP) is a class of mixed‐integer nonlinear programs (MINLP) where the objective function is the ratio of two linear functions and all constraints are linear. Global optimization of large‐scale MILFPs can be computationally intractable due to the presence of discrete variables and the pseudoconvex/pseudoconcave objective function. We propose a novel and efficient reformulation–linearization method, which integrates Charnes–Cooper transformation and Glover's linearization scheme, to transform general MILFPs into their equivalent mixed‐integer linear programs (MILP), allowing MILFPs to be globally optimized effectively with MILP methods. Extensive computational studies are performed to demonstrate the efficiency of this method. To illustrate its applications, we consider two batch scheduling problems, which are modeled as MILFPs based on the continuous‐time formulations. Computational results show that the proposed approach requires significantly shorter CPU times than various general‐purpose MINLP methods and shows similar performance than the tailored parametric algorithm for solving large‐scale MILFP problems. Specifically, it performs with respect to the CPU time roughly a half of the parametric algorithm for the scheduling applications. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4255–4272, 2013  相似文献   

17.
In this paper, an oil wel production scheduling problem for the light load oil wel during petroleum field exploi-tation was studied. The oil well production scheduling was to determine the turn on/off status and oil flow rates of the wel s in a given oil reservoir, subject to a number of constraints such as minimum up/down time limits and well grouping. The problem was formulated as a mixed integer nonlinear programming model that minimized the total production operating cost and start-up cost. Due to the NP-hardness of the problem, an improved par-ticle swarm optimization (PSO) algorithm with a new velocity updating formula was developed to solve the problem approximately. Computational experiments on randomly generated instances were carried out to eval-uate the performance of the model and the algorithm's effectiveness. Compared with the commercial solver CPLEX, the improved PSO can obtain high-quality schedules within a much shorter running time for all the instances.  相似文献   

18.
In the first part of this series of papers we presented a new network-based continuous-time representation for the short-term scheduling of batch processes, which overcomes numerous shortcomings of existing approaches. In this second part, we discuss how this representation can be extended to address aspects such as: (i) preventive maintenance activities on unary resources (e.g., processing and storage units) that were planned ahead of time; (ii) resource-constrained changeover activities on processing and shared storage units; (iii) non-instantaneous resource-constrained material transfer activities; (iv) intermediate deliveries of raw materials and shipments of finished products at predefined times; and (v) scenarios where part of the schedule is fixed because it has been programmed in the previous scheduling horizon. The proposed integrated framework can be used to address a wide variety of process scheduling problems, many of which are intractable with existing tools.  相似文献   

19.
Integration of scheduling and control results in Mixed Integer Nonlinear Programming (MINLP) which is computationally expensive. The online implementation of integrated scheduling and control requires repetitively solving the resulting MINLP at each time interval. (Zhuge and Ierapetritou, Ind Eng Chem Res. 2012;51:8550–8565) To address the online computation burden, we incorporare multi‐parametric Model Predictive Control (mp‐MPC) in the integration of scheduling and control. The proposed methodology involves the development of an integrated model using continuous‐time event‐point formulation for the scheduling level and the derived constraints from explicit MPC for the control level. Results of case studies of batch processes prove that the proposed approach guarantees efficient computation and thus facilitates the online implementation. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3169–3183, 2014  相似文献   

20.
In this work we address the long‐term, quality‐sensitive shale gas development problem. This problem involves planning, design, and strategic decisions such as where, when, and how many shale gas wells to drill, where to lay out gathering pipelines, as well as which delivery agreements to arrange. Our objective is to use computational models to identify the most profitable shale gas development strategies. For this purpose we propose a large‐scale, nonconvex, mixed‐integer nonlinear programming model. We rely on generalized disjunctive programming to systematically derive the building blocks of this model. Based on a tailor‐designed solution strategy we identify near‐global solutions to the resulting large‐scale problems. Finally, we apply the proposed modeling framework to two case studies based on real data to quantify the value of optimization models for shale gas development. Our results suggest that the proposed models can increase upstream operators’ profitability by several million U.S. dollars. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2296–2323, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号