首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 72 毫秒
1.
深度迁移学习技术是通过深度神经网络从一项任务中获得的知识来解决其他相关任务,作为机器学习的一种研究方向,已经得到广泛应用。文章首先介绍了在自然语言处理任务中深度迁移学习应用于文本分类的背景,深度迁移学习的定义,其次通过文献分析了近几年深度迁移学习以实例、映射、网络和对抗四种迁移方式及在文本分类中应用的现状,最后对借助深度迁移学习模型完成文本分类任务的应用进行总结和展望。  相似文献   

2.
针对深度学习模型在实际应用场景中预测性能下降的问题,提出了一种基于风格迁移的数据增强方法。首先,使用少量原始数据和少量实际应用场景下的未标注数据学习风格迁移模型。然后,对大量已标注的原始数据进行风格迁移,得到与实际数据风格相近的大量有标签数据。最后,基于此数据训练面向实际应用场景的深度学习模型。实验结果表明,所提出的方法能有效地提升模型在实际应用场景数据上的预测性能,且效果优于传统数据增强方法。  相似文献   

3.
4.
图像动漫化技术的发展对我国动漫产业影响巨大.目前基于深度学习的动漫风格迁移研究是一项热门的研究方向,相关算法层出不穷.文章对动漫风格迁移领域现有的主流方法和代表性工作进行了归纳和讨论,分析了该领域所使用的主要深度神经网络模型,并按照动漫风格迁移方法所解决的不同实际问题,将其归纳为风景动漫迁移、人像动漫迁移和视频帧动漫迁...  相似文献   

5.
研究了一种将迁移学习引入到地基云图自动识别深度学习网络中的学习过程,其中深度学习网络采用Alex Net经典网络模型,数据集采用 Imagenet样本库进行预训练,学习过程中采用微调操作对网络的权值进行最佳调整,通过对10类地基云图的仿真实验,可以看出,由于云图类别较多,分类任务较难,将迁移学习和微调方法引入到深度学习地基云图自动识别中,是可行和有效的,该方法的有效实施,为深度学习在高精度的地基云图分类以及其他领域图像识别奠定了技术基础。  相似文献   

6.
大多数非均衡数据集的研究集中于重构数据集或者代价敏感学习,针对数据集类分布非均衡和不相等误分类代价往往同时发生这一事实,在简要回顾代价敏感学习理论和现有学习算法的基础上,将所提出的自适应混合重取样算法,与基于最小误分类代价的MetaCost算法分别进行实验比较,实验表明所提出算法在代价敏感学习中具有一定的优势,实验结果显示非均衡类对代价敏感学习算法性能产生较大影响,当样本类别差异较大时,用样本类空间重构的方法可以得到较好的分类效果.  相似文献   

7.
情感分析是文本分类的研究方向,深度迁移学习通过学习目标领域数据和已有领域数据之间的相关度,提高当目标数据不足时文本分类的精度。从基于网络迁移的角度设计算法,首先使用Word2vec+词性特征词向量表示,然后进行卷积神经网络文本分类,再将训练好的模型共享网络参数,迁移至跨域商品评论数据,训练、分类评论数据。实验证明,在小样本数据集中算法精度有明显提升。  相似文献   

8.
为了避免数字电网出现数据样本过量累积问题,设计基于深度神经网络的数字电网边缘侧数据迁移方法。按照深度神经网络构建原则,确定样本容错系数取值标准,根据电网边缘侧数据的传输流量求解资源分配权限,完成电网边缘侧数据整合。设置FIFO调度器闭环,计算HBase迁移参量的具体数值,对整合完成后的电网边缘侧数据进行迁移处理,完成数字电网边缘侧数据迁移方法设计。实验结果表明,在深度神经网络模型作用下,电网边缘侧数据迁移时长平均缩短幅度超过7.0 s,该方法能够很好地解决数字电网边缘侧信息样本过量累积的问题,实际应用效果好。  相似文献   

9.
卷积神经网络是图像分类领域效果卓越的深度学习算法,然而训练深度神经网络是一项繁琐且复杂的工作,不仅在结构设计上依赖开发人员丰富的经验,还容易产生过拟合现象。因此,该文提出一种基于模型迁移的图像识别方法,该方法能够在简化设计思路的同时极大地提升卷积神经网络的性能。此外还在三个小型图片集上进行了多次模型训练和对比分析。研究结果表明,经过迁移学习优化的卷积神经网络的测试集准确率均得到显著提升。  相似文献   

10.
卷积神经网络(CNN)应用于图像识别具有很大优势,但是需要足够深的网络和大量标签完善的数据集才能发挥其优越性.实际应用中,往往需要应对的是质量差和大小不一的数据集,且受硬件设备限制.为了提高图像识别效率和精度,提出一种基于深度卷积神经网络和迁移学习的识别算法.该算法首先对图像预处理和数据增强,后迁移大样本提取出的特征信息用于CNN特征提取,再接入微调网络对数据集再训练.实验结果显示,本文算法对饮食识别的精度和时间性能均有显著的提高,精确度最高可达98%以上,精度提升最高可达10%以上,时间性能提升幅度最高可达110%.  相似文献   

11.
类不均衡的半监督高斯过程分类算法   总被引:1,自引:0,他引:1  
针对传统的监督学习方法难以解决真实数据集标记信息少、训练样本集中存在类不均衡的问题,提出了类不均衡的半监督高斯过程分类算法。算法引入自训练的半监督学习思想,结合高斯过程分类算法计算后验概率,向未标记数据中注入类标记以获得更多准确可信的标记数据,使得训练样本的类分布相对平衡,分类器自适应优化以获得较好的分类效果。实验结果表明,在类不均衡的训练样本及标记信息过少的情况下,该算法通过自训练分类器获得了有效标记,使分类精度得到了有效提高,为解决类不均衡数据分类提供了一个新的思路。  相似文献   

12.
The presence of cuff imbalance degrades the signal-to-interference (ENG/EMG) ratio in tripolar nerve cuff electrode recordings. Known causes of cuff imbalance include inhomogeneous tissue growth after cuff implantation and cuff manufacturing tolerances. In this paper, we report on an additional contribution to cuff imbalance that stems from variations in orientation and distance of the tripolar cuff relative to the external interference source. The latter is represented here by a dipole. Interference amplitude is also shown to depend on orientation and distance variations, here both factors included in the term "proximity." The study was conducted using field simulations and saline-bath experiments.  相似文献   

13.
Cost-sensitive learning has been applied to resolve the multi-class imbalance problem in Internet traffic classification and it has achieved considerable results.But the classification performance on the minority classes with a few bytes is still unhopeful because the existing research only focuses on the classes with a large amount of bytes.Therefore,the class-dependent misclassification cost is studied.Firstly,the flow rate based cost matrix(FCM) is investigated.Secondly,a new cost matrix named weighted cost matrix(WCM) is proposed,which calculates a reasonable weight for each cost of FCM by regarding the data imbalance degree and classification accuracy of each class.It is able to further improve the classification performance on the difficult minority class(the class with more flows but worse classification accuracy).Experimental results on twelve real traffic datasets show that FCM and WCM obtain more than 92% flow g-mean and 80% byte g-mean on average;on the test set collected one year later,WCM outperforms FCM in terms of stability.  相似文献   

14.
Concerning current deep learning-based electrocardiograph(ECG) classification methods, there exists domain discrepancy between the data distributions of the training set and the test set in the inter-patient paradigm. To reduce the negative effect of domain discrepancy on the classification accuracy of ECG signals, this paper incorporates transfer learning into the ECG classification, which aims at applying the knowledge learned from the training set to the test set. Specifically, this paper fir...  相似文献   

15.
孙超  吕俊伟  刘峰  周仁来 《激光与红外》2017,47(12):1559-1564
针对红外图像空间分辨率低、成像质量不高的问题,提出了基于迁移学习的红外图像超分辨率方法。该方法以基于卷积神经网络的自然图像超分辨率方法为基础进行改进:增加网络的层数进行更深层次的学习训练,串联多层小的卷积核使其能够利用更多的图像信息,以“相差图”为目标进行训练,减小网络训练时间,提升网络收敛速度;利用迁移学习知识,再以少量高质量红外图像为目标样本,对自然图像超分辨率的网络进行二次训练,将网络权重经过微调后迁移应用到红外图像的超分辨率上。实验结果表明:基于卷积神经网络的超分辨率方法能够有效迁移应用到红外图像的超分辨率上,且改进后的网络具有更好的自然及红外图像的超分辨率性能,验证了本文所提方法的有效性及优越性。  相似文献   

16.
《信息技术》2019,(4):77-81
自动提取人脸特征来验证人的身份目前已经被广泛的应用在各种领域,但是通过人脸特征来辨别种群大多还是停留在人工提取特征的阶段,耗费大量人力资源,或者使用深度学习,但是需要经过大量的计算消耗大量的时间。文中提出了一种利用迁移学习的方法,通过微调网络以及冻结参数相结合的训练方式提高了原预训练网络对于人脸种群识别的泛化性与稳定性;同时对模型进行了改进以提高识别的时效性,提高了网络识别速度的同时大大减少了网络的参数。经自建的人脸数据集训练测试,取得了良好的检测性能。  相似文献   

17.
在遥感图像场景分类中,基于卷积神经网络 (convolutional neural network,CNN) 的分 类算法存在对训练数据的依赖性,且在缺乏训练数据时分 类效果差等问题,提出一种基于迁移学习的分类算法。首先,选取现有的多个CNN预训练模型,利用迁 移学习的优势对模型进行微调,目的是提取图像不同的高层特征;然后,融合图像的多种高 层特征,使得特征信 息更加丰富;最后,将融合后的高层特征输入到基于逻辑回归的遥感图像分类器中,得到遥 感影像的分类结果。 在UCMerced_LandUse遥感数据集中进行实验,与现有算法进行比较分析,所提算法在3种评 价指标上有明显提 升。通过分析实验结果表明,该算法在仅有10%的训练数据下,能够 达到92.01%的分类准确率和91.61%的Kappa系数。  相似文献   

18.
在万物互联、全面感知、智能决策的大数据信息化时代,大数据信息的采集、大量信号的处理等仍存在数据冗余、计算量大、成本高、不及时和无特征性的缺点。通过迁移学习方法,利用基于权重影响因子进行信息融合的知识流动体系,为物联感知系统提供协助分析并简化计算。在物联感知系统采用迁移学习加数据融合的知识流动方式,以地区用电功率部分数据做短期负荷预测的仿真计算,分析用户用电行为影响因子,训练得到影响因子最佳权重分配,为用电耗率预判提供依据。结果表明,通过该方式,能够清晰辨别用电行为特征,并根据用电特征预判用电耗能。  相似文献   

19.
谢冰  段哲民  郑宾  殷云华 《红外与激光工程》2018,47(6):626001-0626001(7)
无人机在复杂战场环境下,因敌我双方无人机外形、颜色等特征较为相似,如何准确地对敌方无人机识别是实现其自主导航及作战任务执行的关键。由于受敌方无人机飞行速度、形状、尺寸、姿态等的改变及气象环境因素的影响,无法准确地对其进行识别与分类。针对这一问题,提出基于迁移学习卷积稀疏自动编码器(Sparse Auto-Encoder,SAE)实现对航拍多帧图像中敌方目标对象的识别与分类。算法首先借助SAE对源领域数据集中大量无标记样本进行无监督学习,获取其局部特征;然后,采用池化层卷积神经网络(CNN)算法提取目标图像全局特征;最后,送入Softmax回归模型实现目标对象的识别与分类。实验结果表明:与传统非迁移学习的SAE算法及基于底层视觉特征学习的识别算法相比,该算法具有更高的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号